





Rugby Free Secondary School & Quest Academy Sustainable Buildings Statement

19/01/2018

Document Ref: RFS-BMD-ZZ-XX-RP-M-38700

| BAM Design<br>Centrium<br>Griffiths way<br>St Albans<br>Herts<br>AL1 2RD |                                                           |             |          |
|--------------------------------------------------------------------------|-----------------------------------------------------------|-------------|----------|
| Tel No:<br>Fax No:                                                       | (01727 894200)<br>(01727 818852)                          |             |          |
| CLIENT:                                                                  | BAM Construction                                          |             |          |
| PROJECT:                                                                 | Rugby Free Secondary Scho<br>Sustainable Buildings Stater |             | ademy    |
| Contract no:                                                             |                                                           |             |          |
| Job no:                                                                  | 4726/4757                                                 |             |          |
| Document Ref:                                                            | RFS-BMD-ZZ-XX-RP-M-387                                    | 00          |          |
| Prepared by:                                                             | D. Williams                                               | Checked by: | D Burton |

Date: 19/01/2018

Status: S2 - INFORMATION

| Ameno | dments |             |             |            |
|-------|--------|-------------|-------------|------------|
| Ref.  | Date   | Amendment   | Amended by  | Checked by |
| P01   |        | First Issue | D. Williams | D. Burton  |
|       |        |             |             |            |
|       |        |             |             |            |
|       |        |             |             |            |
|       |        |             |             |            |
|       |        |             |             |            |
|       |        |             |             |            |
|       |        |             |             |            |

### Introduction

The following statement sets out the energy and sustainable design strategy for the proposed Rugby Free Secondary School (RFSS) and the Quest Academy Rugby (QAR). This report will highlight the energy performance of the building and the "Be Lean" and "Be Clean" measures that have been adopted on the project to achieve Building Regulations compliance and to demonstrate compliance with Warwick District Council Planning requirement on integrating low/zero carbon technology into the development

For the Free school and Quest Academy the planning condition states the following:-

### DP13 Renewable Energy Developments

### B. In appropriate residential and non-residential developments, including conversions, the Council will require 10% of the predicted energy requirement to be produced on site, or in the locality from renewable energy resources

In line with the methodology set out within section 5 of the SPD we have initially considered the design to maximise energy efficiency of the installed systems i.e. high efficiency gas fired boilers etc. to compliment any renewable technology. Following the inclusion of energy efficiency measures it has been necessary to integrate renewable energy within the design to ultimately achieve the 10% reduction. Further to the feasibility appraisal set out below we are proposing to meet this requirement by integrating approximately 340m<sup>2</sup> (280m<sup>2</sup> for the free school and 60m<sup>2</sup> for the Academy) of roof mounted PV panels to generate a total of 47,474kWh of electricity per year mounted on the roof of the free school. Due to the design of the Academy it was agreed the requirement would be located on the roof of the free school.

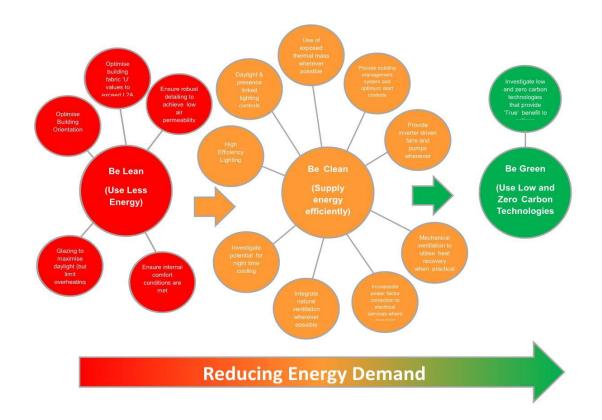
Our approach to providing an energy efficient building in line with the above requirements has enabled the development of a solution, which we have tested using approved DCLG software, to demonstrate compliance with Approved Document L2A 2013

The calculated Approved document L2A:2013 carbon performance and emissions for the school are summarised below:

| Summary                                                              |                                                |
|----------------------------------------------------------------------|------------------------------------------------|
| Calculated CO <sub>2</sub> Emission Rate for the Notional building   | 20.0 Kg CO2/m2.annum                           |
| Target CO <sub>2</sub> Emission Rate (TER)                           | 20.0 Kg CO <sub>2</sub> /m <sup>2</sup> .annum |
| Building CO <sub>2</sub> Emission Rate for the Actual building (BER) | 16.7 Kg CO <sub>2</sub> /m <sup>2</sup> .annum |
| Improvement over notional building                                   | 16.5%                                          |
| Status                                                               | PASS                                           |
| Energy demand of the building (kWh/annum)                            | 758,064 kWh                                    |
| Energy demand delivered by energy efficiency measures (reduction)    | 36,672 kWh                                     |
| Energy demand delivered by photovoltaic panels (kWh/annum)           | 41,880 kWh                                     |
| Percentage of energy demand delivered by low carbon/renewable Energy | 10.36%                                         |

Rugby Free School

### Quest Academy Rugby


| Summary                                                              |                                                |
|----------------------------------------------------------------------|------------------------------------------------|
| Calculated CO <sub>2</sub> Emission Rate for the Notional building   | 22.5 Kg CO2/m2.annum                           |
| Target CO <sub>2</sub> Emission Rate (TER)                           | 22.5 Kg CO <sub>2</sub> /m <sup>2</sup> .annum |
| Building CO <sub>2</sub> Emission Rate for the Actual building (BER) | 19.5 Kg CO <sub>2</sub> /m².annum              |
| Improvement over notional building                                   | 13.3%                                          |
| Status                                                               | PASS                                           |
| Energy demand of the building (kWh/annum)                            | 120,128.6 kWh                                  |
| Energy demand delivered by energy efficiency measures (reduction)    | 3672 kWh                                       |
| Energy demand delivered by photovoltaic panels (kWh/annum)           | 8859 kWh                                       |
| Percentage of energy demand delivered by low carbon/renewable Energy | 10.43%                                         |

### Sustainable Design Strategy

For the RFSS and QAR, we have mapped out the sustainable design strategy that has been followed for the design of the building form, fabric and the environmental services to ensure a well-considered sustainable design solution is provided. This aims to maximise the energy efficiency of the building and thus reduces both carbon dioxide emissions and the energy demand and ultimately operating/running costs.

### The strategy can be summarised below

- Be Lean (Use Less Energy)
- Be Clean (Supply Energy Efficiently)
- Be Green (Use Renewables)



### 'BE LEAN' approach

The following section details the development of the building and the evidence of the key considerations undertaken to ensure we are designing a building that is 'lean'

### **Optimise Building Orientation**

The building orientation has been carefully considered to minimise heat gains whilst maximising daylight.

The building itself complies with the requirements of the EFSA's Facilities Output Specification in relation to providing excellent levels of daylighting and to prevent overheating.

The EFSA Facilities Output Specification requirements are more onerous than the historical requirements to meet compliance and are provided to ensure an excellent learning environment for the pupils and staff.

With regards to daylighting — this building has been designed utilising climate based daylight modelling to ensure the rooms are well lit but also provide a good level of lighting uniformity across the whole room.

With regards to the internal environment a full overheating assessment has been completed utilising the new CIBSE TM52 Adaptive thermal comfort modelling

### Air Permeability

A building with high air leakage increases the wastage of heat during the winter months and as defined within the building regulations a high leakage rate tends to mean that the building itself is poorly constructed.

The air permeability and therefore the heat loss air infiltration parameters will be enhanced beyond the values required by Approved Document L2A.

For schools the best practice figure is 3m<sup>3</sup>/h/m<sup>2</sup> at 50 Pascals and this figure will ultimately be targeted for this project.

This figure is still well below the allowable value of 10 stipulated within Part L of the Building Regulations

As air leakage accounts for a significant proportion of the overall energy loss then robust detailing of the building fabric and identifying the surfaces within the building that will form the air barrier are key to keeping the building Lean, a more complex building with awkward envelope may introduce more detailing problems, so designing for air tightness is fundamental in keeping energy usage down

### Built Form and Fabric Properties

The building construction material and the increased levels of insulation will go beyond the minimum requirements required by Part L of the Building Regulations (2013) and the following shall be targeted for the external walls, roof and glazing.

| 0.23 W/m²K                       |
|----------------------------------|
| 0.20 W/m²K                       |
| 0.18 W/m²K                       |
| 1.6 W/m <sup>2</sup> K (Average) |
|                                  |

### Glazing & Thermal Comfort

The project glazing has been optimized to give a balance of good day lighting availability yet preventing the risk of solar overheating during the summer months.

The Baseline Target model (Part L) assumes that the lesser of either 1.5m high x full facade OR 40% of the exposed building façade is glazed, so the Be Lean design needs to be an improvement on this convention. However, reducing the glazing too much can have a detrimental effect on the daylighting availability and will require the artificial lighting to be on longer, so a level has to be reached where good day lighting does not compromise the heating and cooling loads of the building. Having a slightly higher heating load far outweighs the cost of running artificial lighting.

A further measure to reduce the risk of overheating is by utilising low emissivity glass. Typically we will provide a HIGH light transmitting glass with a LOW solar transmission value (g- value); Ideal values from our study would be around 65-70% for the light transmission and a g-value of 0.35-0.4 for the solar transmission.

From our separate TM52 and climate based daylighting compliance studies – we have chosen a glazing type that provides both good daylighting and good solar thermal performance – the chosen glazing is as follows:-

North Facing - Light transmission of 70% and a g-value of 0.70 (no requirement for solar control due to not in direct sunlight).

South, East & West Facing - Light transmission of 65% and a g-value of 0.37

In addition we are proposing glazing with an Argon cavity fill to reduce heat loss during the winter months.

### 'BE CLEAN' approach

The following section details the development of the building and the evidence of the key considerations undertaken to ensure we are designing a building that is 'clean' and ensuring we minimise the use of energy and what energy we do use it is used efficiently and minimising waste.

### Natural Ventilation

Where ever possible a natural ventilation strategy has been adopted, as this will require very little or no energy input.

Summertime ventilation is to be provided with manually openable windows

### Mechanical Ventilation

Wherever mechanical ventilation is required the mechanical ventilation system shall incorporate heat recovery to reduce energy consumption and improve the efficiency of the systems. In addition wherever possible these systems shall be controlled via both temperature and CO2 to maximise energy efficiency and shall operate on a variable volume basis to maximise energy efficiency throughout their operation

### High Efficiency Lighting

In line with Building Bulletin 87 and approved document L2A high efficiency lighting will be provided to achieve a lighting efficacy no less than 65 lamp lumens per circuit Watt

As part of the development of the energy strategy we have ensured that the lighting solution is both energy efficient and provides good uniformity within the task area

From our studies we have selected the lighting solution that provides both good energy efficiency and meets the required uniformity

All lighting used on the project both internally and externally will utilise LED technology which will not only reduce energy consumption but also reduce ongoing maintenance costs

### Daylighting controls

Energy consumed by lighting is a major energy demand on schools and allied to the selection of energy efficient light fittings; we are proposing intelligent lighting controls to further reduce the energy consumed by the lighting systems. The lighting controls will include the following

- Presence and absence detection is to be provided to all circulation and staff areas to ensure lighting is only energised when areas are in occupation
- Daylight linked lighting control to automatically switch lighting off when there are suitable levels of natural daylight
- Photocell and time clock lighting controls to external light fittings

### Variable Speed Drives

To reduce the energy consumed by pumps and fans throughout the school wherever possible variable speed drives will be provided to ensure energy efficient operation of these systems.

### Air Handling Plant

Any air handling units and extract fans will be designed to meet and wherever possible exceed the minimum Part L standards for Specific Fan Powers,

Air handling plant will incorporate heat recovery components to maximise energy efficiency

### Controls/ Building Management System

The School will be provided with a building management system (BMS) this system will provide control and monitoring of the various building services systems.

Intelligent outstations will be positioned throughout the development in strategic locations adjacent to the services being controlled/ monitored. The controls will optimise the operation of the systems to ensure efficient performance.

There will be a provision for metering and alarms for out of range values.

### 'BE GREEN' approach

Under the planning requirement 10% of the buildings energy demand shall be provided via low and zero carbon technology or renewable energy

The school will therefore be provided with some form of renewable energy to meet this requirement. The table below appraises potential renewable energy technologies based on the site specific constraints.

| Technology                        | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                    | Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cost<br>effectiveness                                              | Considered<br>Feasible | Reasons for exclusion?                                                                                                                                                                            |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photovoltaic<br>Panels<br>(Solar) | Photovoltaic installations formed of an<br>array of PV panels convert energy from<br>sunlight into electrical energy.<br>Efficiencies are quite low but improving<br>as the technology advances. Typical<br>efficiencies are between 10% for the<br>least expensive thin film panel. 15-19%<br>for a polycrystalline version up to 17-<br>21% for the best quality monocrystalline<br>panels.<br>PVs convert electrical energy directly<br>into DC voltage which must first be<br>converted via inverters to AC to be<br>useful in a building.<br>There are 2 main types of systems, grid-<br>connected and stand-alone. Stand-alone<br>systems are common in remote areas.<br>The grid-connected systems use an<br>inverter to ensure the power generated is<br>matched to the characteristics the grid<br>requires for voltage, phase etc. A<br>G83/G57 safety device is required to<br>isolate the supply to the grid in the event<br>of grid failure. | Wide range of<br>installation options,<br>flat roofs, building<br>facades, glass roof<br>structures and solar<br>shading devices.<br>Can be grid<br>connected which<br>could allow some<br>beneficial payments<br>for exporting<br>electricity to the grid.<br>Low maintenance<br>once installed.<br>Building integrated<br>arrays can be built<br>into the building<br>structure/façade.<br>Eligible for<br>government Feed in<br>Tariffs. | Relatively high<br>installation cost.<br>Periodic cleaning<br>required, although<br>this is still considered<br>low maintenance.                                                                                                                                                                                                                                                                                                                                                                                                             | Low however<br>much<br>improved<br>with feed in<br>tariff applied. | Yes                    | N/A                                                                                                                                                                                               |
| Solar<br>Thermal<br>Generation    | Solar thermal systems use a solar<br>collector usually roof mounted, the sun<br>heats fluid within the collector which in<br>turn is used to heat water stored in a<br>tank which can then be used usually for<br>washing and cleaning. There are 2 main<br>types of collector, flat plate collectors<br>and evacuated tube collectors. The latter<br>is more expensive but more efficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evacuated tubes<br>offer higher<br>obtainable water<br>temperatures which<br>could be used for<br>space heating<br>applications.<br>Proven technology<br>with a range of<br>collectors available                                                                                                                                                                                                                                            | Flat plate collectors<br>have a relatively low<br>efficiency; evacuated<br>tubes are better but<br>are more difficult to<br>incorporate as they<br>cannot be embedded<br>in roof structures.<br>The major issue is<br>high stagnation<br>temperatures when<br>not in use as well as<br>for educational<br>projects an<br>unfortunate offset<br>between demand<br>and generation. i.e.<br>the most hot water<br>generation is<br>available during the<br>summer when<br>educational buildings<br>are generally closed<br>or at the least have | Medium                                                             | No                     | Solar<br>Thermal<br>generation<br>does not<br>easily align<br>with the<br>demand<br>associated<br>with a schoo<br>i.e. closed fo<br>summer<br>when solar<br>generation<br>potential is<br>highest |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | reduced demand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    |                        |                                                                                                                                                                                                   |

| Technology                     | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Benefits                                                                                                                                                                                                                                                                                                                                                                                                    | Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cost<br>effectiveness                                               | Considered<br>Feasible | Reasons for exclusion?                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Turbines                       | (kinetic energy) into electrical energy via<br>rotating blades. There are 2 basic types,<br>horizontal axis and vertical axis with the<br>classic horizontal axis; windmill' type<br>being by far the commonest. Outputs<br>vary hugely from a few hundred Watts up<br>to several MW of output.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | generation on-site.<br>Can be grid<br>connected to benefit<br>from exporting<br>energy.<br>Very visual, high<br>impact if advertising<br>'green' credentials is<br>a factor                                                                                                                                                                                                                                 | locations is not likely<br>to be good or<br>reliable.<br>A host of planning<br>issues come into<br>effect with turbines<br>being very<br>controversial for local<br>communities.<br>Building mounted<br>turbines can create<br>vibration and noise<br>issues.<br>Actual real world<br>output can vary and<br>can be significantly<br>lower than the                                                                                                                                                                                                                                                                                                       | varies greatly<br>with location.                                    |                        | location and<br>planning<br>sensitivities<br>would make a<br>wind turbine<br>which is large<br>enough very<br>difficult to<br>achieve. Also<br>the payback<br>estimates for<br>a wind turbine<br>in a city<br>centre<br>location are<br>prohibitive.                                                                                                            |
| Biomass<br>Heating             | Biomass usually in the form of wood or<br>wood pellets may be used in biomass<br>boilers to generate heat for heating and<br>hot water. Biomass has become popular<br>in recent years owing to its ability to<br>produce continuous output unlike other<br>renewable sources such as wind.<br>Biomass benefits the environment<br>because the organic material that goes<br>into making biomass uses significantly<br>less energy to produce than it releases<br>when it is burnt.<br>Biofuels are also available derived either<br>from waste products such as cooking oil,<br>or from energy crops such as biodiesel<br>from rapeseed.                                                                                                                                                   | A biomass fuels can<br>be used to generate<br>continuous energy<br>supplies which<br>makes biomass a<br>good substitute for<br>fossil fuels.<br>Biomass can be a<br>source for both heat<br>and electricity if used<br>with a CHP system.<br>Proven technology<br>with lots of choice in<br>the market place for<br>boilers with<br>capacities to meet<br>applications from<br>very small to very<br>large. | theoretical output.<br>Biomass systems<br>have quite onerous<br>requirements in<br>terms of their<br>sourcing, delivery<br>and storage.<br>The lower energy<br>density of biomass<br>compared to fossil<br>fuels means that bulk<br>storage can become<br>quite large and must<br>be specially<br>designed to facility<br>delivery and feed to<br>the boilers.<br>Biomass (wood chip,<br>pellet or waste wood)<br>boilers are not<br>efficient at part load<br>and have longer start<br>up and cool down<br>times than a<br>conventional gas<br>fired boiler. A buffer<br>vessel or, suitably<br>sized natural gas<br>boiler may be<br>required to absorb | Medium,<br>more<br>expensive<br>than<br>traditional<br>gas boilers. | Yes                    | No. storage<br>of bio mass<br>fuel and<br>deliveries to<br>an urban/<br>residential<br>location are<br>problematic.<br>There is also<br>a sacrifice in<br>BREEAM<br>score for NOx<br>emissions.<br>Maintenance<br>is also more<br>intensive than<br>traditional gas<br>boilers and is<br>unlikely to be<br>acceptable by<br>the school's<br>maintenance<br>team |
| Ground<br>Source<br>Heat Pumps | Ground source systems use aquifers<br>deep below ground to make use of the<br>relatively stable ground temperatures.<br>Through the use of a heat pump system<br>to exploit the temperature difference<br>between the ground and the building to<br>provide either cooled water for cooling or<br>heated water for heating. There are 2<br>distinct types; open loop and closed<br>loop.<br>Open loop systems comprise of 2<br>boreholes, a cold well and a warm well.<br>Water is extracted from one and put<br>back into the other with heat exchanged<br>to/from the water during the process.<br>The chilled water can be used by chilled<br>beams or similar to provide cooling,<br>some heat pump units can also produce<br>hot water for heating from ground water<br>temperatures. | Reduces or negates<br>the requirements for<br>mechanical cooling.<br>Can be combined<br>with heat pump<br>technology to<br>provide benefit for<br>heating and cooling.                                                                                                                                                                                                                                      | fluctuations in load.<br>Boreholes are costly,<br>their output is also<br>largely dependent on<br>ground conditions<br>which may be<br>estimated before<br>drilling but only<br>confirmed by a test<br>borehole drilled<br>before<br>commencement of<br>the main scheme.<br>Open looped<br>systems are not<br>appropriate for<br>ecologically sensitive<br>areas, they are also<br>prone to blockages<br>and biological<br>fouling.                                                                                                                                                                                                                       | Medium,<br>depends on<br>borehole<br>array                          | No                     | The capital<br>expenditure<br>of sinking<br>deep<br>boreholes<br>below the<br>building is<br>prohibitive,<br>the level of<br>EFA funding<br>would not<br>permit such a<br>scheme<br>without<br>additional<br>finds which<br>are not<br>available<br>even though<br>the relative<br>payback may                                                                  |

| Technology       | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limitations                                                                                                                                                                                                                                                                                                                                                | Cost<br>effectiveness                                     | Considered<br>Feasible | Reasons for exclusion?                                                                                                                                                                                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Closed loop systems rely on closed<br>boreholes drilled into the ground which<br>contain pipework loops through which<br>water (or brine solution) is passed in<br>order to exchange heat with the ground.<br>Because the ground is a constant<br>temperature heat can be extracted<br>during the winter for heating and 'coolth'<br>exchanged from the ground for summer<br>cooling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Over time,<br>particularly with<br>closed loop systems,<br>the ground array can<br>become overloaded<br>and the ground<br>temperature could<br>increase or decrease<br>which could reduce<br>the effectiveness of<br>the installation.                                                                                                                     |                                                           |                        | be attractive,<br>CAPEX is a<br>stumbling<br>block. There<br>would also be<br>a risk to the<br>client and to<br>BAM that<br>borehole<br>performance<br>may be poor<br>which could<br>have<br>programme<br>as well as<br>cost<br>implications.                                     |
| CHP/Micro<br>CHP | Combined Heat and Power or co-<br>generation comprises of an engine which<br>produces mechanical power from a fuel<br>such as gas, diesel or bio-diesel<br>predominantly in building use the engine<br>is a gas engine type which will run on<br>natural gas. The engine or prime-mover<br>is coupled to an integral generator which<br>generates power. The waste heat from<br>producing the electricity is then used for<br>space heating and domestic hot water<br>generation.<br>CHP units are available from Micro units<br>of 5kWe up to very large scale units of<br>50MWe. Commonly in buildings we<br>would be interested in Micro (<5kWe) or<br>Mini (5-500kWe).<br>CHP units may also be coupled to<br>absorption chillers which can make use<br>of excess waste heat to produce chilled<br>water for cooling purposes. The<br>coefficients of performance are poor<br>compared to conventional chillers in the<br>region of 0.7-1.2 but with waste heat as<br>the fuel, the machine is recovering<br>energy which may otherwise be wasted. | Can be used to<br>produce electricity<br>and heat on site<br>May be used<br>continuously unlike<br>some other<br>renewable<br>technologies.<br>CHP can utilise<br>natural gas or use<br>renewable fuel<br>sources such as<br>biogas or biodiesel.<br>Can be coupled with<br>absorption chillers to<br>provide tri-<br>generation.<br>Good efficiencies are<br>available if sized<br>correctly and<br>designed to recover<br>as much waste heat<br>as possible. | CHPs should be<br>sized for the stable<br>base load meaning<br>addition plant is often<br>required to make up<br>the remaining load.<br>CHP systems must<br>be sized correctly to<br>avoid excessive<br>amounts of waste<br>heat and/or the unit<br>being unable to<br>operate at times of<br>lower demand.<br>Regular planned<br>maintenance<br>required. | Medium,<br>depends on<br>the utilisation<br>of waste heat | No                     | A CHP which<br>is large<br>enough to<br>contribute<br>10% of the<br>energy<br>consumed on<br>site by<br>renewable<br>means would<br>produce an<br>excessive<br>amount of<br>waste heat<br>which could<br>not be used<br>effectively.<br>High capital<br>cost is also<br>an issue. |

Following the renewable technology appraisal, photovoltaic panels have been deemed to be the most appropriate renewable technology. As such a further analysis has been undertaken to confirm the required system size.

### Calculating the Renewables Requirement

### Rugby Free School

A baseline Part L analysis has been undertaken to determine the building's estimated energy consumption and associated CO<sub>2</sub> emissions. The following table outlines the anticipated energy consumption by end use.

| Energy Consumption (End Use)  | Actual | Notional |
|-------------------------------|--------|----------|
| Heating (gas)                 | 28.53  | 26.04    |
| Cooling (elec)                | 0      | 0        |
| Auxillary (elec)              | 2.71   | 2.5      |
| Lighting (elec)               | 10.51  | 14.74    |
| Hot water (gas)               | 26.21  | 26.29    |
| Equipment (elec) <sup>1</sup> | 20.53  | 20.53    |
| Total (excluding Equipment)   | 67.96  | 69.57    |

As can be seen from the table above there are significant reductions in energy consumption by using energy efficient LED lighting, and the heating loads are comparable to the notional building even though the hybrid ventilation system proposed does not benefit from heat recovery (as the equivalent Notional ventilation system would do).

Next, it is important to include for unregulated energy consumption as required in section 5.4 of the SPD. In order to use a suitable figure the EFSA's energy modelling guide has been used, which gives required targets for all energy uses in education buildings. In the case of a secondary school the benchmark for equipment and small power is 25kWh/m<sup>2</sup> per year.

Therefore the total anticipated energy consumption figures are as follows;

| Energy Consumption                      | Actual | Notional |
|-----------------------------------------|--------|----------|
| Total including unregulated consumption | 92.96  | 94.57    |

In order to determine the size of photovoltaic system required to meet the 10% obligation, it is necessary to normalise the kWh energy consumption in terms of kilowatt hours of electrical consumption. To do this we have used the methodology within the EFSA's energy modelling guide, Table 1, which outlines conversion factors for KWh for various fuels and means of generating energy.

### 3.2 **PSBP Energy Targets**

Energy Targets in PSBP are expressed as Kilowatt hour's electricity equivalent, kWhe.

kWhe is the equivalent electrical kWh calculated by multiplying the different fuel kWh consumptions for different energy sources by the following standard energy weighting factors (The Weighting Factors were developed for the Better Buildings Partnerships for its Landlords Energy Rating Scheme).

### **Table 1: Energy Weighting Factors**

| Category    | Description                                      | Energy Weighting<br>Factor |
|-------------|--------------------------------------------------|----------------------------|
| Electricity | includes mains electricity, electricity from     | 1.0                        |
|             | combined heat and power and renewable energy     |                            |
| All Fuels   | includes, gas, oil, and biofuels                 | 0.4                        |
| All thermal | includes geothermal, district heat and heat from | 0.5                        |
| Energy      | combined heat and power and solar thermal        |                            |

1 - Table 1 from the EFA Energy Modelling Guide 2014

<sup>&</sup>lt;sup>1</sup> This figure is not reflective of actual energy use so is not considered appropriate for this analysis (refer to SPD section 5.4)

The revised total figures in kWhe (electrical energy consumption), based on Table 1 are as follows;

| Energy Consumption (End Use)              | Actual | Notional |
|-------------------------------------------|--------|----------|
| Heating (gas)                             | 11.41  | 10.42    |
| Cooling (elec)                            | 0      | 0        |
| Auxillary (elec)                          | 2.71   | 2.5      |
| Lighting (elec)                           | 10.51  | 14.74    |
| Hot water (gas)                           | 10.48  | 10.52    |
| Unregulated electrical consumption (elec) | 25     | 25       |
| Total                                     | 60.12  | 63.18    |

As such a reduction in energy consumption of 10% of 63.18kWhe would be required, i.e. 6.32kWhe/m<sup>2</sup>.

The energy efficient measures provide a (63.18-60.12) 3.06kWhe/m<sup>2</sup> reduction; therefore the PV system will need to provide a further (6.32-3.06) **3.26kWhe/m<sup>2</sup>**, or **39134kWh/annum**.

A further Part L analysis has been undertaken, with a **56kWp** array of panels. This provides the required additional energy reduction to meet the 10% requirement.

The 56kWp array of PV panels will be approximately 280m<sup>2</sup> of PV panel, depending on panel efficiency and size.

### Quest Academy Rugby

A baseline Part L analysis has been undertaken to determine the building's estimated energy consumption and associated CO<sub>2</sub> emissions. The following table outlines the anticipated energy consumption by end use.

| Energy Consumption (End Use)  | Actual | Notional |
|-------------------------------|--------|----------|
| Heating (gas)                 | 32.35  | 29.2     |
| Cooling (elec)                | 0      | 0        |
| Auxillary (elec)              | 3.18   | 2.75     |
| Lighting (elec)               | 10.51  | 14.09    |
| Hot water (gas)               | 35.9   | 35.62    |
| Equipment (elec) <sup>2</sup> | 22.05  | 22.05    |
| Total (excluding Equipment)   | 81.97  | 81.66    |

As can be seen from the table above there are significant reductions in energy consumption by using energy efficient LED lighting, and the heating loads are comparable to the notional building even though the hybrid ventilation system proposed does not benefit from heat recovery (as the equivalent Notional ventilation system would do).

Next, it is important to include for unregulated energy consumption as required in section 5.4 of the SPD. In order to use a suitable figure the EFSA's energy modelling guide has been used, which gives required targets for all energy uses in education buildings. In the case of a secondary school the benchmark for equipment and small power is 15kWh/m<sup>2</sup> per year.

Therefore the total anticipated energy consumption figures are as follows;

| Energy Consumption                      | Actual | Notional |
|-----------------------------------------|--------|----------|
| Total including unregulated consumption | 96.97  | 96.66    |

In order to determine the size of photovoltaic system required to meet the 10% obligation, it is necessary to normalise the kWh energy consumption in terms of kilowatt hours of electrical consumption. To do this we have used the methodology within the EFSA's energy modelling guide, Table 1, which outlines conversion factors for KWh for various fuels and means of generating energy.

<sup>&</sup>lt;sup>2</sup> This figure is not reflective of actual energy use so is not considered appropriate for this analysis (refer to SPD section 5.4)

### 3.2 **PSBP Energy Targets**

Energy Targets in PSBP are expressed as Kilowatt hour's electricity equivalent, kWhe.

kWhe is the equivalent electrical kWh calculated by multiplying the different fuel kWh consumptions for different energy sources by the following standard energy weighting factors (The Weighting Factors were developed for the Better Buildings Partnerships for its Landlords Energy Rating Scheme).

### Table 1: Energy Weighting Factors

| Category    | Description                                      | Energy Weighting<br>Factor |
|-------------|--------------------------------------------------|----------------------------|
| Electricity | includes mains electricity, electricity from     | 1.0                        |
|             | combined heat and power and renewable energy     |                            |
| All Fuels   | includes, gas, oil, and biofuels                 | 0.4                        |
| All thermal | includes geothermal, district heat and heat from | 0.5                        |
| Energy      | combined heat and power and solar thermal        |                            |

2 - Table 1 from the EFA Energy Modelling Guide 2014

The revised total figures in kWhe (electrical energy consumption), based on Table 1 are as follows;

| Energy Consumption (End Use)              | Actual | Notional |
|-------------------------------------------|--------|----------|
| Heating (gas)                             | 12.94  | 11.68    |
| Cooling (elec)                            | 0      | 0        |
| Auxillary (elec)                          | 3.18   | 2.75     |
| Lighting (elec)                           | 10.51  | 14.09    |
| Hot water (gas)                           | 14.37  | 14.25    |
| Unregulated electrical consumption (elec) | 15     | 15       |
| Total                                     | 56.00  | 57.77    |

As such a reduction in energy consumption of 10% of 57.77 kWhe would be required, i.e. 5.78kWhe/m<sup>2</sup>.

The energy efficient measures provide a (57.77-56.00) 1.77kWhe/m<sup>2</sup> reduction; therefore the PV system will need to provide a further (5.78-1.77) **4.01kWhe/m<sup>2</sup>**, or **8340 kWh/annum**.

A further Part L analysis has been undertaken, with a **10kWp** array of panels. This provides the required additional energy reduction to meet the 10% requirement.

The 10kWp array of PV panels will be approximately 60m<sup>2</sup> of PV panel, depending on panel efficiency and size.

The total requirement for both buildings is **47474kWh/annum** and this equates to approximately **340m**<sup>2</sup> of panels. These will be located on the roof of the Free School.

| _        |
|----------|
| g)       |
| L        |
| q        |
| uildi    |
| ы        |
|          |
| Э        |
| o        |
| Ť.       |
| 9        |
| <        |
| vs.      |
| >        |
| a        |
| IJ       |
| C        |
| P        |
| Ħ        |
| ŝ        |
| Ļ        |
| S        |
| b<br>B   |
| a        |
|          |
| a        |
| <u>s</u> |
| L        |
| ÷        |
| ě.       |
|          |

ding Use

| Building Global Parameters                                                                        | ameters                   |                         | Bu    |
|---------------------------------------------------------------------------------------------------|---------------------------|-------------------------|-------|
|                                                                                                   | Actual                    | Notional                | % Are |
| Area [m²]                                                                                         | 12013.6                   | 12013.6                 |       |
| External area [m²]                                                                                | 16478.2                   | 16478.2                 |       |
| Weather                                                                                           | BIR                       | BIR                     |       |
| Infiltration [m <sup>3</sup> /hm <sup>2</sup> @ 50Pa]                                             | e                         | e                       |       |
| Average conductance [W/K] 5583.83                                                                 | 5583.83                   | 5797.3                  |       |
| Average U-value [W/m <sup>2</sup> K]                                                              | 0.34                      | 0.35                    |       |
| Alpha value* [%]                                                                                  | 9.97                      | 10                      |       |
| * Percentage of the building's average heat transfer coefficient which is due to thermal bridging | sfer coefficient which is | due to thermal bridging |       |

| rea Building Type | A1/A2 Retail/Financial and Professional services | A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways | B1 Offices and Workshop businesses | B2 to B7 General Industrial and Special Industrial Groups | B8 Storage or Distribution | C1 Hotels | C2 Residential Institutions: Hospitals and Care Homes | C2 Residential Institutions: Residential schools | C2 Residential Institutions: Universities and colleges | C2A Secure Residential Institutions |  |
|-------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------|-----------------------------------------------------------|----------------------------|-----------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------------------|--|
|-------------------|--------------------------------------------------|--------------------------------------------------------|------------------------------------|-----------------------------------------------------------|----------------------------|-----------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------------------|--|

### Museums, and Galleries Health Care Building D1 Non-residential Institutions: Libraries, Muse D1 Non-residential Institutions: Education

100

D1 Non-residential Institutions: Community/Day Centre

D2 General Assembly and Leisure, Night Clubs, and Theatres D1 Non-residential Institutions: Primary Health Care Buildi D1 Non-residential Institutions: Crown and County Courts Others: Miscellaneous 24hr activities Others: Car Parks 24 hrs Others: Stand alone utility block Others: Passenger terminals Others: Emergency services

| L. |
|----|
| N  |
| Y  |
| ļ  |
| se |
| n  |
| Б  |
| Ē  |
| ш  |
| Ň  |
| -  |
| E  |
| ţ  |
| d  |
| du |
| ١  |
| S. |
| 0  |
| S  |
| y  |
| 5  |
| e  |
| -  |

Ξ

|                                                                                                                                                                                                     | Actual                                                                | Notional                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|
| Heating                                                                                                                                                                                             | 28.53                                                                 | 26.04                    |
| Cooling                                                                                                                                                                                             | 0                                                                     | 0                        |
| Auxiliary                                                                                                                                                                                           | 2.71                                                                  | 2.5                      |
| Lighting                                                                                                                                                                                            | 10.51                                                                 | 14.74                    |
| Hot water                                                                                                                                                                                           | 26.21                                                                 | 26.29                    |
| Equipment*                                                                                                                                                                                          | 20.53                                                                 | 20.53                    |
| TOTAL**                                                                                                                                                                                             | 67.97                                                                 | 69.57                    |
| <ul> <li>Energy used by equipment does not court towards the total for calculating emissions.</li> <li>Total is not of any electrical energy displaced by CHP generators, if applicable.</li> </ul> | rt towards the total for calculatin<br>aced by CHP generators, if app | g emissions.<br>Ircable. |

| applicable. |
|-------------|
| -           |
| generators, |
| £           |
| à           |
| displaced   |
| energy      |
| electrical  |
| any         |
| 6           |
| uet         |
| 03          |
| otal        |

| / [kwn/m <sup>-</sup> | lotional |
|-----------------------|----------|
| gy                    | Š        |
| õ                     |          |
| chnology              |          |
| сh                    |          |
| ec                    |          |
| ρλ                    | otto     |
| C                     | ~        |
| roductio              |          |
| C                     |          |
| B                     |          |
| 10                    |          |
| Υ                     |          |
| 9                     |          |
| ne                    |          |
| _                     |          |

|                       | Actual | Notional |
|-----------------------|--------|----------|
| Photovoltaic systems  | 3.49   | 0        |
| Wind turbines         | 0      | 0        |
| CHP generators        | 0      | 0        |
| Solar thermal systems | 0      | 0        |
|                       |        |          |

## Energy & CO<sub>2</sub> Emissions Summary

|                                                    | Actual | Notional |
|----------------------------------------------------|--------|----------|
| Heating + cooling demand [MJ/m <sup>2</sup> ] 94.5 | 94.5   | 80.82    |
| Primary energy* [kWh/m <sup>2</sup> ]              | 106.37 | 115.45   |
| Total emissions [kg/m <sup>2</sup> ]               | 16.7   | 20       |
|                                                    |        |          |

|                                                                                       | Actual                          | Notional |  |
|---------------------------------------------------------------------------------------|---------------------------------|----------|--|
| ting + cooling demand [MJ/m <sup>2</sup> ] 94.5                                       | 94.5                            | 80.82    |  |
| ary energy* [kWh/m <sup>2</sup> ]                                                     | 106.37                          | 115.45   |  |
| l emissions [kg/m <sup>2</sup> ]                                                      | 16.7                            | 20       |  |
| ry energy is net of any electrical energy displaced by CHP generators, if applicable. | w CHP generators, if applicable |          |  |

|   | if applicable. |  |
|---|----------------|--|
|   | generators,    |  |
| L | Æ              |  |

| BRUKL Output Document ( BRUKL Output Document Compliance with England Building Regulations Part L 2013 | <pre>ent (************************************</pre> |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Project name                                                                                           |                                                      |
| Rugby Free School- PV                                                                                  | As designed                                          |
| Date: Fri Aug 11 12:23:31 2017                                                                         |                                                      |
| Administrative information                                                                             |                                                      |
| Building Details                                                                                       | Owner Details                                        |
| Address: Address 1, City, Postcode                                                                     | Name: Rugby Free School                              |
|                                                                                                        | Telephone number: Phone                              |
| Certification tool                                                                                     | Address: Street Address, City, Postcode              |

**BRUKL Summary – Rugby Free School** 

# Criterion 1: The calculated CO<sub>2</sub> emission rate for the building must not exceed the target

Address: BAM Design, Building 4, Centrium, Griffiths Way, St Albans, AL1 2RD

Name: Ms Sepideh Gheidi Telephone number: 01727 894200

Interface to calculation engine: IES Virtual Environment

Calculation engine version: 7.0.7

Calculation engine: Apache

Interface to calculation engine version: 7.0.7 BRUKL compliance check version: v5.3.a.0

Certifier details

| h/m².annum                                                                             |                     |
|----------------------------------------------------------------------------------------|---------------------|
|                                                                                        |                     |
| i arget CO2 emission rate (i EN), kgCO2/mr.annum                                       |                     |
| Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> .annum |                     |
| Are emissions from the building less than or equal to the target? BER =                | BER =< TER          |
| Are as built details the same as used in the BER calculations? Separt                  | Separate submission |

### ince Guide and Part L are Criterion 2: The performance of the building fabric and fixed building services should ing Services Cor achieve reasonable overall standards of energy efficiency ards in the Non-I

## Values which do not achieve the s displayed in red. Building fabric

| Element                                                                                                                                                                                                                                                                                                                                                                                   | U <sub>a-Limit</sub>     | Ua-Calc                                              | Ui-Calc                                   | Ua-Limit Ua-Cale U-Cale Surface where the maximum value occurs*                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wall**                                                                                                                                                                                                                                                                                                                                                                                    | 0.35                     | 0.23                                                 | 0.23                                      | 01000002:Surf[21]                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Floor                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                     | 0.22                                                 | 0.22                                      | 01000002:Surf[23]                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Roof                                                                                                                                                                                                                                                                                                                                                                                      | 0.25                     | 0.15                                                 | 0.15                                      | 01000002:Surf[24]                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Windows***, roof windows, and rooflights 2.2                                                                                                                                                                                                                                                                                                                                              | 2.2                      | 1.73                                                 | 1.93                                      | 01000002:Surf[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Personnel doors                                                                                                                                                                                                                                                                                                                                                                           | 2.2                      | 2.2                                                  | 2.2                                       | NR000002:Surf[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vehicle access & similar large doors                                                                                                                                                                                                                                                                                                                                                      | 1.5                      |                                                      |                                           | No Vehicle access doors in building                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| High usage entrance doors                                                                                                                                                                                                                                                                                                                                                                 | 3.5                      |                                                      |                                           | No High usage entrance doors in building                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Us-⊔mi = Limiting area-weighted average U-values [W/(m'K)]<br>Us-cas = Calculated area-weighted average U-values [W/(m'K)]                                                                                                                                                                                                                                                                | (m°K)]<br>W/(m°K)]       |                                                      | Ui-Cale = C                               | $U_{\text{Lose}}=Calculated maximum individual element U-values [W/(m^*K)]$                                                                                                                                                                                                                                                                                                                                                                                                  |
| There might be more than one surface where the maximum U-value occurs. * Automatic U-value check by the tool does not apply to curtarh walls whose limiting standard is similar to that for windows. ** Display windows and similar gazing are excluded from the U-value occes. *** Therefore root valuables or synchroning pool basing are modeled or checked against the limiting star. | to curtair<br>from the U | l-value oc<br>n walls wh<br>U-value ch<br>pool basin | curs.<br>ose limitin<br>eck.<br>s are mod | <ul> <li>There might be more than one surface where the maximum Uvalue occurs.</li> <li>Automote U-value check by the tool does not apply to curvally walls whose limiting standard is similar to that for windows.</li> <li>Display windows and milar glazing are excluded from the U-value check.</li> <li>M.B. Mehlher root ventilations flux, survey ventilations for swimming pool basins are modeled or checked against the limiting standards by the tool.</li> </ul> |

| Air Permeability   | Worst acceptable standard | ard This building |
|--------------------|---------------------------|-------------------|
| m³/(h.m²) at 50 Pa | 10                        | 0                 |

|                                                          |                                                                                                                                                                               |                                                  |                                          |                                                                                                                        | BR   |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|
| HM Government                                            | Technical Dat                                                                                                                                                                 | a Sheet                                          | (Actual v                                | Technical Data Sheet (Actual vs. Notional Building)                                                                    | UKL  |
| Part L 2013                                              | <b>Building Global Parameters</b>                                                                                                                                             | rameters                                         |                                          | Building Use                                                                                                           | . Su |
|                                                          |                                                                                                                                                                               | Actual                                           | Notional                                 | % Area Building Type                                                                                                   | mn   |
|                                                          | Area [m2]                                                                                                                                                                     | 2079.5                                           | 2079.5                                   | A1/A2 Retail/Financial and Professional services                                                                       | nai  |
| -P02-PV As designed                                      | External area [m2]                                                                                                                                                            | 4199.6                                           | 4199.6                                   | A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways                                                                 | ry · |
|                                                          | Weather                                                                                                                                                                       | BIR                                              | BIR                                      | B1 Offices and Workshop businesses<br>B2 to B7 General Industrial and Search Industrial Ground                         | - (  |
|                                                          | Infiltration [m3/hm2@ 50Pa]                                                                                                                                                   | 5                                                | 8                                        | es to es centeral invusional and operate invusional circups<br>88 Storage or Distribution                              | ີຊູນ |
|                                                          | Average conductance [W/K] 1309.35                                                                                                                                             | 1309.35                                          | 1538.31                                  | C1 Hotels                                                                                                              | es   |
|                                                          | Average U-value [W/m <sup>2</sup> K]                                                                                                                                          | 0.31                                             | 0.37                                     | C2 Residential Institutions: Hospitals and Care Homes                                                                  | st / |
|                                                          | Alpha value* [%]                                                                                                                                                              | 11.63                                            | 10                                       | C2 Residential Institutions: Residential schools<br>C2 Residential Institutions: Universities and collarge             | Aca  |
| SII                                                      | <ul> <li>Percentage of the building's average heat transfer coefficient which is due to thermal bridging</li> </ul>                                                           | ansfer coefficient which                         | ch is due to thermal bridging            | C2A Secure Residential Institutions                                                                                    | ade  |
| umber: Phone                                             |                                                                                                                                                                               |                                                  |                                          | Residential spaces<br>D1 Non-residential Institutions: Community/Day Centre                                            | emy  |
| eet Address, City, Postcode                              |                                                                                                                                                                               |                                                  |                                          | D1 Non-residential Institutions: Libraries, Museums, and Galleries                                                     | R    |
| tails                                                    |                                                                                                                                                                               |                                                  |                                          |                                                                                                                        | ugb  |
| i                                                        |                                                                                                                                                                               |                                                  |                                          | D1 Non-residential Institutions: Crown and County Courts<br>D2 General Assembly and Leisure, Night Clubs, and Theatres | у    |
| umber: Phone<br>eet Address, City, Postcode              |                                                                                                                                                                               |                                                  |                                          | Others: Passenger terminals<br>Others: Emergency services                                                              |      |
| ilding must not exceed the target                        |                                                                                                                                                                               |                                                  |                                          | Others: Miscellaneous 24hr activities<br>Others: Car Parks 24 hrs<br>Others: Stand alone utility block                 |      |
| 22.5                                                     | Energy Consumption by End Use [kWh/m²]                                                                                                                                        | on by End                                        | d Use [kWh/m                             |                                                                                                                        |      |
| 22.5                                                     |                                                                                                                                                                               | Actual                                           | Notional                                 |                                                                                                                        |      |
| 19.5                                                     | Heating                                                                                                                                                                       | 32.35                                            | 29.2                                     |                                                                                                                        |      |
| BER =< TER                                               |                                                                                                                                                                               | 0                                                | 0                                        |                                                                                                                        |      |
| Separate submission                                      |                                                                                                                                                                               | 3.18                                             | 2.75                                     |                                                                                                                        |      |
|                                                          | Lighting                                                                                                                                                                      | 10.51                                            | 14.09                                    |                                                                                                                        |      |
| iivod building comisso chould                            | Hot water                                                                                                                                                                     | 35.93                                            | 35.62                                    |                                                                                                                        |      |
| iixea builailig services should                          |                                                                                                                                                                               | 22.05                                            | 22.05                                    |                                                                                                                        |      |
| Services Compliance Guide and Part L are                 | TOTAL"                                                                                                                                                                        | 81.97                                            | 81.66                                    |                                                                                                                        |      |
|                                                          | * Energy used by equipment does not count howards the total for calculating emissions<br>** Total is net of any electrical energy displaced by CHP generators, if applicable. | owards the lotal for ca<br>of by CHIP generators | iculating emissions.<br>, if applicable. |                                                                                                                        |      |
| urface where the maximum value occurs*                   | Energy Production by Technology [kWh/m <sup>2</sup> ]                                                                                                                         | bv Techr                                         | ioloav [kWh/i                            | m²                                                                                                                     |      |
| 0000006:Surf[2]                                          |                                                                                                                                                                               |                                                  |                                          |                                                                                                                        |      |
| 0000006:Surf[0]                                          | Photovoltaic evetame                                                                                                                                                          | 4 26                                             | NOtional                                 |                                                                                                                        |      |
| 100000/:Surr[0]                                          |                                                                                                                                                                               | 0                                                | 0                                        |                                                                                                                        |      |
| 0000028:Surf[2]                                          | CHP generators (                                                                                                                                                              | 0                                                | 0                                        |                                                                                                                        |      |
| o Vehicle access doors in building                       | stems                                                                                                                                                                         | 0                                                | 0                                        |                                                                                                                        |      |
| o High usage entrance doors in building                  |                                                                                                                                                                               |                                                  |                                          |                                                                                                                        |      |
| ulated maximum individual element U-values [W/(m*K)]     | Energy & CO <sub>2</sub> Emissions Summary                                                                                                                                    | ssions Su                                        | mmary                                    |                                                                                                                        |      |
| tandard is similar to that for windows.                  | 8                                                                                                                                                                             | Actual                                           |                                          | Notional                                                                                                               |      |
| d or checked against the limiting standards by the tool. | Heating + cooling demand [MJ/m <sup>2</sup> ] 105.42                                                                                                                          | MJ/m <sup>2</sup> ] 105                          | 407                                      | 91.12                                                                                                                  |      |

Compliance with England Building Regulations

Project name

**BRUKL** Output Document

# QAR-BMD-ZZ-ZZ-MR-M-30000-S0-

| 2017     |
|----------|
| 10:28:59 |
| 16       |
| Aug      |
| Wed      |
| Date:    |

| Administrative information                               |                                         |
|----------------------------------------------------------|-----------------------------------------|
| Building Details                                         | Owner Details                           |
| Address: Rugby SEN School, Birmingham,                   | Name: Name                              |
|                                                          | Telephone number: Phone                 |
| Certification tool                                       | Address: Street Address, City, Postcode |
| Calculation engine: Apache                               |                                         |
| Calculation engine version: 7.0.7                        | Certifier details                       |
| Interface to calculation engine: IES Virtual Environment | Name: Name                              |
|                                                          | Telephone number: Phone                 |
| Intertace to calculation engine version: 7.0.7           | Address: Street Address, City, Postcode |

# Criterion 1: The calculated CO<sub>2</sub> emission rate for the bui

BRUKL compliance check version: v5.3.a.0

| 22.5                                                                                               | 22.5                                                                    | 19.5                                                                                   | BER =< TER                                                        | Separate submission                                            |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|
| CO <sub>2</sub> emission rate from the notional building, kgCO <sub>2</sub> /m <sup>2</sup> .annum | Target CO <sub>2</sub> emission rate (TER), kgCO2/m <sup>2</sup> .annum | Building CO <sub>2</sub> emission rate (BER), kgCO <sub>2</sub> /m <sup>2</sup> .annum | Are emissions from the building less than or equal to the target? | Are as built details the same as used in the BER calculations? |

## the building fabric and achieve reasonable overall standards of energy eff Criterion 2: The performance of 1

Values which do I displayed in red. Building fahrio

| Element                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                           | a-Limit                               | Ua-Cale                                           | UI-Cale                                      | Ua-Limit Ua-cale Ui-cale Surface where the maximum value occurs*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wall**                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                           | 0.35                                  | 0.2                                               | 0.2                                          | 0000006:Surf[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Floor                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                           | 0.25                                  | 0.22                                              | 0.22                                         | 0000006:Surf[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Roof                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                           | 0.25                                  | 0.14                                              | 0.14                                         | 01000007:Surf[0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Windows***, roof windows, and rooflights                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | 2.2                                   | 1.46                                              | 1.46                                         | 0000006:Surf[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Personnel doors                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                           | 2.2                                   | 2.2                                               | 2.2                                          | 00000028:Surf[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vehicle access & similar large doors                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             | 1.5                                   |                                                   |                                              | No Vehicle access doors in building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| High usage entrance doors                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                           | 3.5                                   |                                                   |                                              | No High usage entrance doors in building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ua⊾mai = Limiting area-weighted average U-values [₩/(m <sup>+</sup> K)]<br>Uacae = Calculated area-weighted average U-values [W/(m <sup>+</sup> K)]                                                                                                                                                                                                                                                                                               | alues [W/(n<br>J-values [W                                  | n²K)]<br>//(m²K)]                     |                                                   | Ui-caic = C                                  | Ucose = Calculated maximum individual element U-values [W/(m*K)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>There might be more than one surface where the maximum U-value occurs.</li> <li>Automatic U-value check by the tool does on apply to rutain waits wasse limiting standard is similar to that for windows.</li> <li>Dispay windows and similar giving are excluded from the U-value check.</li> <li>NB.: Neither root ventilators (inc. smoke vents) nor symming pool basins are modelled or checked against the limiting stan</li> </ul> | re the maxi<br>not apply to<br>excluded fro<br>ts) nor swir | mum U<br>curtair<br>om the I<br>mming | -value oc<br>valls wh<br>J-value ch<br>pool basin | curs.<br>Iose limitin<br>Teck.<br>Is are mod | • There might be more than one surface where the maximum U-value occurs. • Automatic U-value check by the load does not apply to curvit walls whose limiting standard is similar to that for windows. • Estimation U-state check by the load does not apply to curvit walls whose limiting standard is similar to that for windows. • Estimation U-state check by the load does not apply to curvit walls whose limiting standard is similar to that for windows. • Estimation U-state check by the load does not apply to curvit walls whose limiting standards by the load. • N.B.: Neither root ventilators (inc. standards vents) not symmitting pool basins are modelled or checked against the limiting standards by the tool. |
| Air Bormonhilitu                                                                                                                                                                                                                                                                                                                                                                                                                                  | Movet .                                                     | 10000                                 | to oldet                                          | Worst scontable standard                     | This huilding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| m <sup>3</sup> //h m <sup>2</sup> ) at 50 Pa                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                          | donne                                 |                                                   |                                              | Suppose sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| n 100 m /                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                           |                                       |                                                   |                                              | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

129.84 22.5

124.52 19.5

Primary energy\* [kWh/m<sup>2</sup>] Total emissions [kg/m<sup>2</sup>] energy is not of an