

**Below Ground Drainage** 

Initial design Concept To support Planning Application For

**Rugby Free School** 

# At

Long Furlong,

Rugby.

November 2017.



BAM Design Centrium Griffiths way St Albans Herts AL1 2RD

Tel No: (01727) 894200 Fax No: (01727) 818850

BAM Design Technical Report.

## SUBJECT

### Below Ground Drainage, Initial Design Concept.

CLIENT:

BAM Construction Midlands.

PROJECT:

Rugby Free School & Quest SEN Academy.

Contract no: Prepared by: S Bliss. Job no: 4726. Checked by: SGB.

Date: 16<sup>th</sup> November 2017.

Status of drawings / specifications: For Approval.

| AMENI | DMENTS   |                                                                 |               |               |
|-------|----------|-----------------------------------------------------------------|---------------|---------------|
| ref.  | date     | amendment                                                       | amended<br>by | checked<br>by |
| In0   | 22/11/17 | Issued for Discussion at Pre -<br>Application Planning Meeting. | SB            | SB            |
| Ap1   | 25/1/18  | General Revisions, Drainage<br>Calculations added.              | SB / DRW      | SB            |
|       |          | Issued for Warwickshire CC Planning<br>Approval.                |               |               |
| Ap2   | 01/02/18 | Minor Revisions regarding condition numbers.                    | BG            | SB            |
|       |          |                                                                 |               |               |



## <u>Contents</u>

- 1.0 Introduction.
- 2.0 Site Description.
- 3.0 Drainage General.
- 4.0 Storm Water Drainage.
- 5.0 Foul Water Drainage.
- 6.0 Conclusion.
- Appendix A. Rugby Free School. Site Boundary.
- Appendix B. Existing Storm Water Overland Flow routes.
- Appendix C. Soil Infiltration Test results.
- Appendix D. Car Parks B, C & D storm water attenuation calculations.
- Appendix E. Micro Drainage Calculations.





### Below ground drainage Initial Concept Design.

#### Introduction. 1.0

BAM Design have been nominated to be responsible for the below ground drainage design for the new Rugby Free Secondary School and Quest SEN School. Both schools share a common access road off Long Furlong and Anderson Avenue, Rugby.

A Flood Risk assessment has been produced by Alan Wood & Partners. This document has been produced following correspondence with the Warwickshire County Council, Lead Local Flood Authority.

Outline Planning Permission has been granted subject to various conditions being met. Conditions 18 and 28 refer to complying with the requirements of the above mentioned Flood Risk assessment.

It is therefore considered that the above Flood Risk assessment and planning conditions form our design brief in relation to the below ground drainage design.

This report and calculations must be read in conjunction with the following drainage design drawings:

RFS-BMD-ZZ-ZZ-DR-D-50000-P01.4 Below Ground Drainage Layout.

RFS-BMD-ZZ-ZZ-DR-D-50020-P01 Porous Car Park Sections. Sheet 1.

#### 2.0 Site Description.

The site area is approximately 11.4 Hectares and is currently 100% soft landscape. This is made up from existing playing fields (6.01 Hectares) and farm land. (5.4 Hectares). Appendix A indicates the site location and boundaries.

The Ordnance Survey grid reference for the centre of the site development is approximately X: 450325, Y: 273390. The local post code is CV22 5PE.

The topographical Survey indicates the site highest points being along the Southern, Western and Northern boundaries. The land generally falls from these boundaries towards the lower Eastern boundary. This boundary is defined by an existing hedgerow, ditches and a pond. These features provide the outfalls for the overland storm water drainage flows. These ditches are routed across the adjacent farm land and eventually discharge to Sow Brook (North).

The farm land is owned by Rugby Private School whom will be advised of our drainage intentions.

Appendix B indicates the existing site overland storm water run-off flow routes.

Soil infiltration tests in accordance with BRE digest 365 have been performed in four locations. Unfortunately these tests have failed, indicating that local ground conditions are not suitable for the use of drainage infiltration methods. Appendix C provides the results of these tests.

The storm water drainage design will therefore follow the existing drainage exit routes with the flow limited to existing green field run-off rates provided within the Flood Risk Assessment and Planning Conditions.

#### 3.0 Drainage General.





The new below ground drainage proposal will comprise completely separate foul and storm water systems.

The systems will be designed in accordance with BS EN 752, The Building Regulations section H and Environment agency Planning Policy Statement PPS25. Foul water flows will be calculated in accordance with BS EN 12056 part 3.

The provision of porous car parks over a granular storage medium has negated the need for petrol / oil interceptors as directed by the SUDS manual and EA document PPG 3.

All drainage calculations will be produced using the industry accepted Micro Drainage software suite.

Once the drainage design has been completed, a Section 106 application will be made to Severn Trent Water for two new foul water sewer connection to the STW sewer within Long Furlong.

### 3.0 Storm Water Drainage.

The Requirement H3 of the Building Regulations 2000 has been considered for this project. This establishes a preferred hierarchy for surface water disposal. Consideration should firstly be given to discharge to a soakaway infiltration system and secondly, to a watercourse, then thirdly to a public sewer, in that priority order.

As previously discussed, soil infiltration tests have failed. The site generally falls towards the existing ditches and pond on the Eastern Boundary. The proposed drainage installation will therefore mimic the current drainage scenario.

These discharges <u>**MUST**</u> be restricted to the agreed green field discharge of 11.8 Litres per second with the remainder of the water attenuated on site until the storm has receded. The Flood Risk Assessment and Planning condition 28 require a minimum attenuation volume 2180m<sup>3</sup>. The current design provides a total storm water attenuation volume of **2347m<sup>3</sup>**.

The preferred attenuation options for this project will include:

- Porous Car parking, pedestrian and games areas.
- Gravel filled filter trenches.
- Surface level Pond.
- Surface level dry swales / filter strips which will both store and convey water.
- 100 year event + 40% Climate Change detention basin on lowered grass sports pitch.

### Porous Surfaces.

The granular fill sub base below porous car parking areas will have a 30% voids ratio. These voids provide a volume within which storm water can be stored for the duration of rainfall.

The complete granular fill and all perforated inlet / outlet pipes will be wrapped with Inbitex Geotextile fabric. This is a polypropylene and polyethelene non-woven fabric. During the manufacturing process, small dishes are created on the surface of the hairs from which the Geotextile is manufactured. This allows an early establishment of a microbial biomass which is responsible eating and degrading oils suspended in the water. It is also important during dry periods that the microbial population can retreat into the dishes where moisture can still be found. Thus when it rains again the microbial biomass is quickly re-established. This negates the need for traditional petrol interceptors. Silt removal at porous surface level provides two trains of improvement in water quality prior to discharge.

### Gravel Filled filter trenches.

These will accept run-off laterally as sheet flow from impermeable footpaths, roads and car parks. Some point flow inlets will also be used where roadway kerbs are required. The filter trenches will be used to both store and convey water towards the outfalls. The entire trench will be wrapped with Inbitex geotextile, these trenches will act exactly the same as the porous surfaces and provide two trains of water treatment. Filter trenches also provide surface level attenuation within the granular voids and soakage into the ground if the local soil is receptive.



Surface Level Pond,

The use of ponds, provides storm water attenuation above the normal water level. The pond will receive silt free water with light loading of dissolved pollution that can be processed within the water column by micro-organisms. Ponds can therefore be seen as polishing mechanisms.

Surface level swales. (Detention Basins).

Swales are linear vegetated channels with a flat base that encourage sheet flow of water through grass and other robust vegetation. Suspended particles are then intercepted by this vegetation. Swales also provide surface level attenuation and soakage into the ground if the soil is receptive.

Detention Basins.

This is a recessed grassed area that will normally be used as a sports pitch. The area will only flood for storms that exceed the 1 in 30 year event and have the capacity to store the 1 in 100 year + 40% event.

All the above described structures are accepted SUDS Drainage techniques. In accordance with Environment Agency requirements the storm water drainage system will be designed to prevent flooding from a 1 in 30 year storm event.

The design will then be further interrogated against a 1 in 100 year storm event + 40% for future climate change. The run off from this storm must be retained on site whilst maintaining a safe exit route from the building.

We believe all of the above is in accordance current SuDS legislation and the requirements of the "Technical Guidance to the National Planning Policy Framework".

Off-site flows will be controlled using vortex flow limiters.

Appendix D provides the attenuation calculations for Car Parks labelled B, C & D. These also accept some run-off from building roofs, external areas and the access road.

Appendix E provides the Micro Drainage calculation for the above mentioned SUDS features.

#### 5.0 Foul Water Drainage.

The two School buildings will each be provided with their own gravity foul water drainage systems. Each system will discharge to a foul water pumping chamber containing duty and stand-by submersible drainage pumps. From these pump chambers the sewage will be pumped to the water authority sewer network.

In accordance with building regulation requirements, each pump chamber will be stored 1 days foul water discharge. This will be based on a water usage of 20 litres per building occupant.

A Section 106 consent for a new foul water connection to the Severn Trent Water sewer within Long Furlong will be made once the design has been completed.

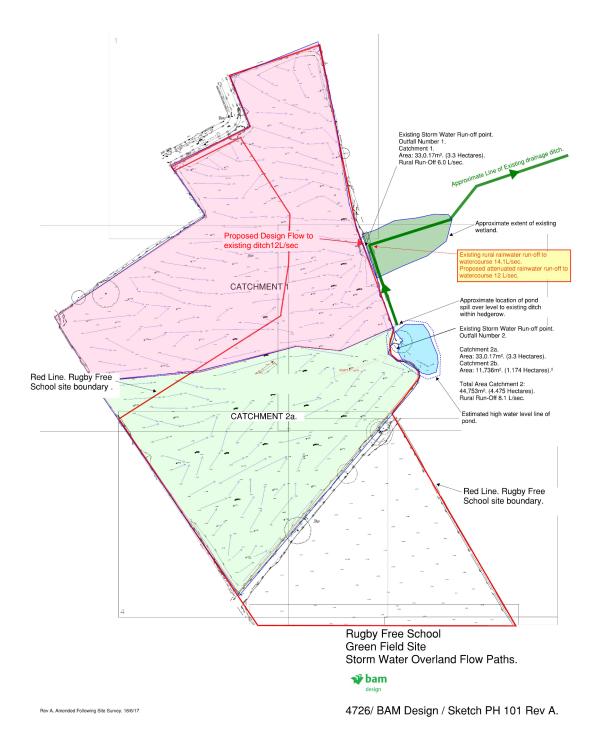
Access Chambers and rodding points will be provided to allow future maintenance of the system. Adequate ventilation pipes and trapped gullies will be provided to prevent the build-up of foul smells in or around the building.

#### 6.0 Conclusion.



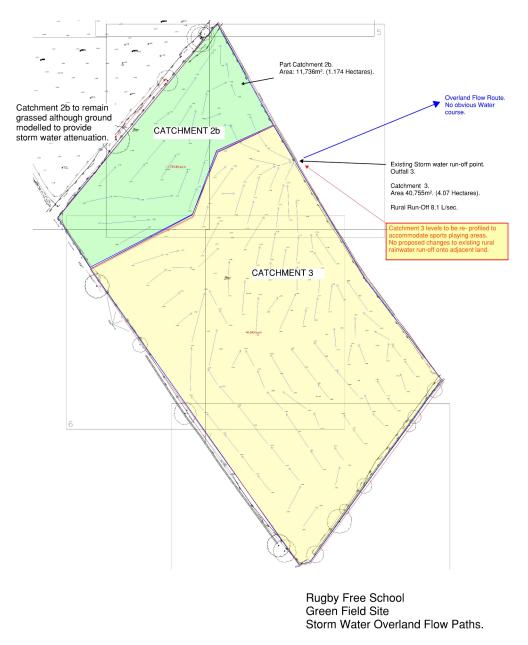
Vortex flow controllers will limit the discharge off-site to 12 Litres per second as detailed within the Warwickshire County Council planning conditions.

Appendix D provides an initial drainage strategy which is subject to future development as the scheme progresses.




Appendix A. Rugby Free School, Site Boundary.




### Appendix B. Existing Site Overland Flow Routes.

Rugby Free School. Existing & Proposed Rainwater Run-off onto Adjacent Property.





Rugby Free School. Existing & Proposed Rainwater Run-off to Adjacent Property.



design

4726/ BAM Design / Sketch PH 102 Rev A.

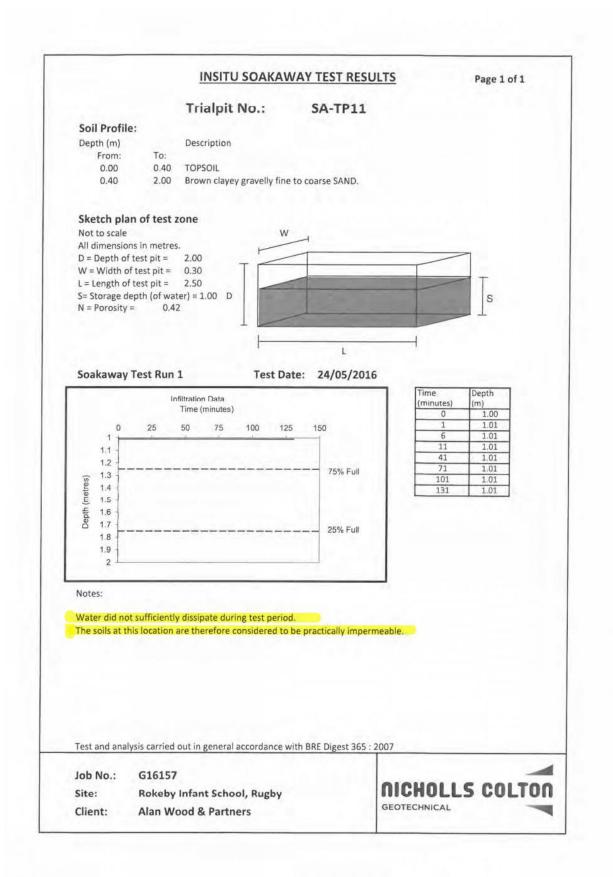
Rev A. Amended Following Site Survey. 16/6/17



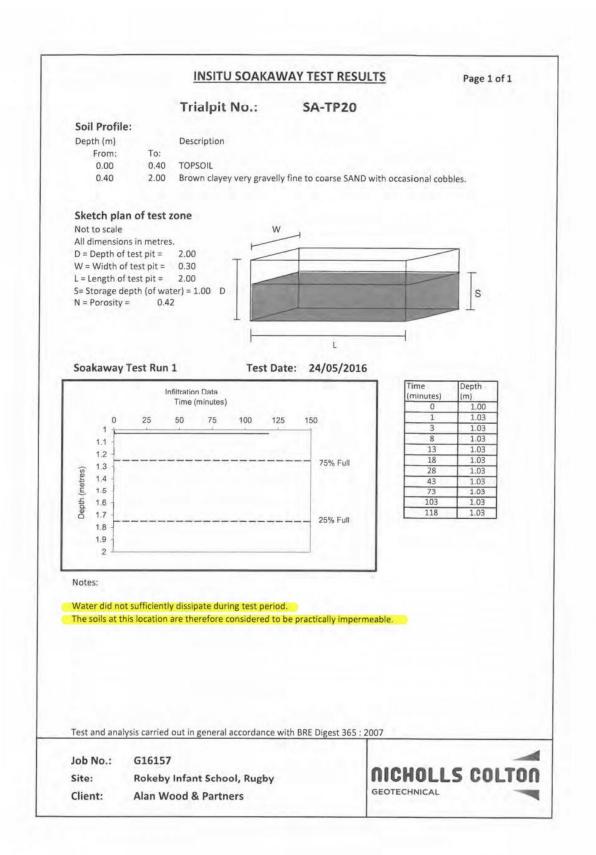
## Appendix C. Soil Infiltration test Results.

Land off Furlong Avenue, Rugby, CV22 5QU Phase II Geo-Environmental Assessment Report Project Number: - JS/DA/38151-Rp-001

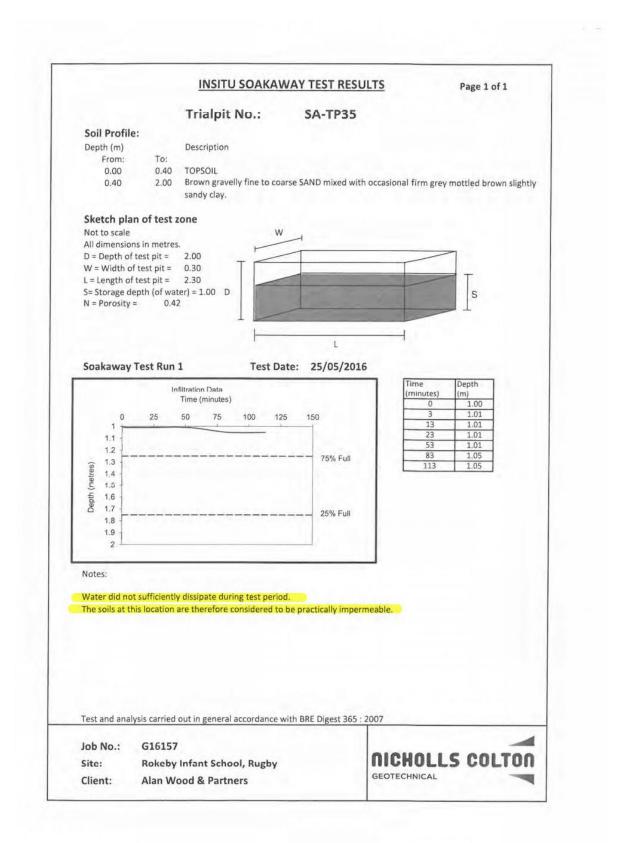



44

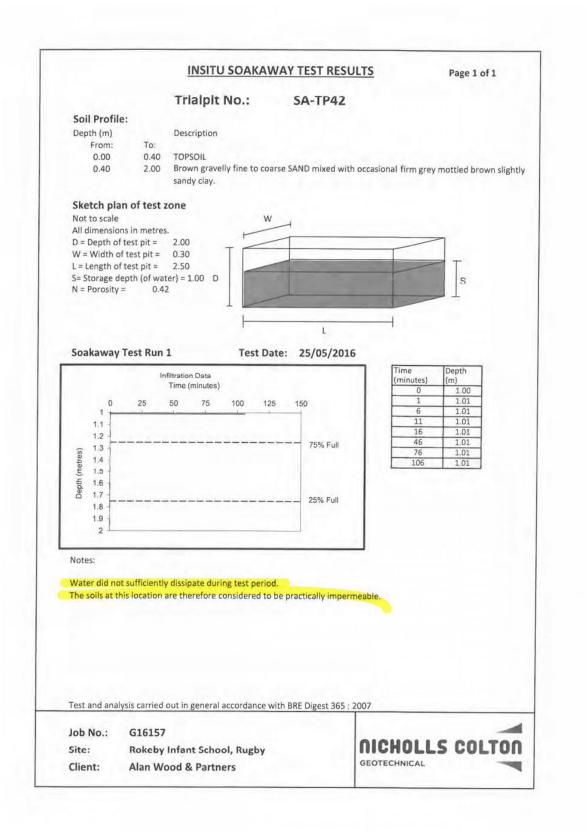
**Rugby Free School** 


SOAKAWAY TEST RESULTS

Report prepared for Gardiner & Theobald LLP


















## Appendix D. Attenuation Calculations for car parks B, C & D granular sub structures.

| BAM Design Ltd                     |                          |            |           |                             |           | E           | age 1      |
|------------------------------------|--------------------------|------------|-----------|-----------------------------|-----------|-------------|------------|
| Centrium, Griffiths                | Way                      | Rugh       | oy Free   | School                      |           | ſ           |            |
| St Albans                          |                          |            | -         | C + part                    | bldg      |             | 4          |
| Herts AL1 2RD                      |                          |            |           | g approva                   | 100       |             | - Con      |
| Date 25/01/2018                    |                          | -25-6      | -         | S Bliss                     | 2777)     |             | MICLO      |
| File Car Park B, C                 | + Buildin                | 201222-025 | cked by   |                             |           |             | Drainago   |
| Micro Drainage                     |                          |            |           | rol 2017.                   | 1         |             |            |
| intere statnage                    |                          |            |           |                             |           |             |            |
| Summary                            | of Result                | s for 1    | 00 year   | Return Pe                   | eriod (+4 | 10%)        |            |
|                                    | Half                     | Drain Tir  | ne · 1984 | minutes.                    |           |             |            |
| Storm                              | Max Ma                   |            | 1ax       | Max                         | Max       | Max         | Status     |
| Event                              |                          | th Infil   |           | Control []<br>(1/s)         |           |             |            |
| 15 min Summer                      | 15.376 0.1               | 76         | 0.0       | 1.0                         | 1.0       | 84.5        | ОК         |
| 30 min Summer                      |                          |            | 0.0       | 1.0                         | 1.0       | 111.8       | 0 K        |
| 60 min Summer                      |                          |            | 0.0       | 1.0                         | 1.0       | 139.3       | OK         |
| 120 min Summer<br>180 min Summer   |                          |            | 0.0       | 1.0                         | 1.0       | 166.2       | ОК         |
| 240 min Summer                     |                          |            | 0.0       | 1.1                         | 1.1       | 189.9       | οĸ         |
| 360 min Summer                     |                          |            | 0.0       | 1.1                         | 1.1       | 200.6       | οк         |
| 480 min Summer                     |                          |            | 0.0       | 1.1                         | 1.1       | 207.3       |            |
| 600 min Summer                     |                          |            | 0.0       | 1.1                         | 1.1       | 211.2       |            |
| 720 min Summer<br>960 min Summer   |                          |            | 0.0       | 1.1                         | 1.1       | 213.3       | ОК         |
| 1440 min Summer                    |                          |            | 0.0       | 1.1                         | 1.1       | 214.3 208.5 |            |
| 2160 min Summer                    |                          |            | 0.0       | 1.1                         | 1.1       | 195.1       | οĸ         |
| 2880 min Summer                    |                          |            | 0.0       | 1.1                         | 1.1       | 184.0       | οк         |
| 4320 min Summer                    |                          |            | 0.0       | 1.0                         | 1.0       | 166.3       | ок         |
| 5760 min Summer                    |                          |            | 0.0       | 1.0                         | 1.0       | 150.4       |            |
| 7200 min Summer<br>8640 min Summer |                          |            | 0.0       | 1.0                         | 1.0       | 135.8 121.9 | 0 K<br>0 K |
| 10080 min Summer                   |                          |            | 0.0       | 1.0                         | 1.0       | 108.8       |            |
| 15 min Winter                      |                          |            | 0.0       | 1.0                         | 1.0       | 95.6        | 0 К        |
|                                    | Storm                    | Rain       | Eloadad   | Discharge                   | Time Dor  |             |            |
|                                    | Storm<br>Event           | (mm/hr)    |           | Volume<br>(m <sup>3</sup> ) | (mins)    | 1           |            |
|                                    | min Summer               |            |           | 80.6                        | 5 2       | 23          |            |
|                                    | min Summer               |            |           | 82.5                        |           | 38          |            |
|                                    | min Summer               |            |           | 142.3                       |           | 68          |            |
|                                    | min Summer               |            |           | 166.8<br>168.7              |           |             |            |
|                                    | min Summer               |            |           | 169.8                       |           |             |            |
|                                    | min Summer               |            |           | 170.9                       |           |             |            |
|                                    | min Summer               | 10.943     | 0.0       | 171.5                       | i 48      | 34          |            |
|                                    | min Summer               |            |           | 171.7                       |           |             |            |
|                                    | min Summer               |            |           | 171.5                       |           |             |            |
|                                    | min Summer<br>min Summer |            |           | 170.9<br>168.3              |           |             |            |
|                                    | min Summer               |            |           | 308.2                       |           |             |            |
|                                    | min Summer               |            |           | 321.0                       |           |             |            |
|                                    | min Summer               | 1.836      | 0.0       | 299.5                       | 5 293     | 36          |            |
|                                    | min Summer               |            |           | 358.4                       |           |             |            |
|                                    | min Summer               |            |           | 369.0                       |           |             |            |
|                                    | min Summer               |            |           | 377.3                       |           |             |            |
|                                    | min Summer<br>min Winter |            |           | 383.4<br>81.5               |           | 14<br>23    |            |
|                                    |                          | 982-201    |           |                             | -         |             |            |
|                                    | ©1                       | 70Z-ZUI    | / AP 501  | UCIOUS                      |           |             |            |





| BAM Design Ltd                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                               |                                                    |                           |                                                                                                                                                                      |                                                                                                                                  | Page 2                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Centrium, Griffit                                                                                                                                                                                                                                                                | hs Way                                                                                                                                                                                                                                                                                                        | Rugh                                               | y Free                    | School                                                                                                                                                               |                                                                                                                                  |                                                                                                                                                                          |
| St Albans                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                               | Car                                                | Park B,                   | C + part                                                                                                                                                             | bldg                                                                                                                             | L.                                                                                                                                                                       |
| Herts AL1 2RD                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               | For                                                | plannin                   | g approval                                                                                                                                                           | L.                                                                                                                               | Micco                                                                                                                                                                    |
| Date 25/01/2018                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                               | Desi                                               | .gned by                  | S Bliss                                                                                                                                                              |                                                                                                                                  | - MICrO                                                                                                                                                                  |
| File Car Park B,                                                                                                                                                                                                                                                                 | C + Buildin                                                                                                                                                                                                                                                                                                   | . Chec                                             | ked by                    | SGB                                                                                                                                                                  |                                                                                                                                  | Drainage                                                                                                                                                                 |
| Micro Drainage                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                               | Sour                                               | ce Cont                   | rol 2017.1                                                                                                                                                           | L <sub>eo</sub>                                                                                                                  |                                                                                                                                                                          |
| <u>Summa:</u><br>Storm<br>Event                                                                                                                                                                                                                                                  | ry of Results<br>Max Max<br>Level Depth 1<br>(m) (m)                                                                                                                                                                                                                                                          | Max                                                | ation Cor                 | 1ax Ma                                                                                                                                                               | ax Max<br>tflow Volum                                                                                                            | Status                                                                                                                                                                   |
| 30 min Winter<br>60 min Winter<br>120 min Winter<br>180 min Winter<br>360 min Winter<br>480 min Winter<br>720 min Winter<br>960 min Winter<br>2160 min Winter<br>2380 min Winter<br>4320 min Winter<br>5760 min Winter<br>5760 min Winter<br>8640 min Winter<br>10080 min Winter | $\begin{array}{ccccc} 15.528 & 0.328 \\ 15.591 & 0.391 \\ 15.626 & 0.426 \\ 15.649 & 0.449 \\ 15.675 & 0.475 \\ 15.693 & 0.493 \\ 15.704 & 0.504 \\ 15.711 & 0.511 \\ 15.712 & 0.512 \\ 15.684 & 0.484 \\ 15.652 & 0.452 \\ 15.662 & 0.452 \\ 15.554 & 0.354 \\ 15.548 & 0.308 \\ 15.465 & 0.265 \end{array}$ |                                                    |                           | 1.0<br>1.0<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1                                                                                                                 | 1.1 245.<br>1.1 248.                                                                                                             | 5 0 K<br>9 0 K<br>6 0 K<br>2 0 K<br>5 0 K<br>5 0 K<br>8 Flood Risk<br>2 Flood Risk<br>2 Flood Risk<br>6 Flood Risk<br>2 0 K<br>8 0 K<br>8 0 K<br>8 0 K<br>8 0 K<br>2 0 K |
|                                                                                                                                                                                                                                                                                  | Storm<br>Event                                                                                                                                                                                                                                                                                                | Rain<br>(mm/hr)                                    | Flooded<br>Volume<br>(m³) | Discharge<br>Volume<br>(m³)                                                                                                                                          | Time-Peak<br>(mins)                                                                                                              |                                                                                                                                                                          |
| 6<br>12<br>18<br>22<br>36<br>60<br>72<br>96<br>144<br>286<br>433<br>576<br>72<br>286<br>433<br>576<br>722<br>864                                                                                                                                                                 | 80 min Winter<br>90 min Winter<br>20 min Winter<br>60 min Winter<br>40 min Winter<br>60 min Winter<br>80 min Winter                                                                                                                                                                                           | 4.507<br>3.240<br>2.561<br>1.836<br>1.449<br>1.205 |                           | 83.6<br>160.6<br>169.8<br>171.9<br>173.1<br>174.3<br>174.9<br>175.1<br>175.0<br><b>174.2</b><br>171.4<br>334.7<br>330.7<br>312.1<br>405.1<br>417.6<br>427.0<br>434.7 | 37<br>66<br>126<br>184<br>242<br>360<br>476<br>594<br>710<br>938<br>1386<br>2012<br>2256<br>3160<br>4088<br>4904<br>5784<br>6560 |                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                  | ©19                                                                                                                                                                                                                                                                                                           | 82-2017                                            | 7 XP Sol                  | utions                                                                                                                                                               |                                                                                                                                  |                                                                                                                                                                          |



| BAM Design Ltd                                                                                    |                                                                                                                                                        | Page 3      |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Centrium, Griffiths Way                                                                           | Rugby Free School                                                                                                                                      |             |
| St Albans                                                                                         | Car Park B, C + part bldg                                                                                                                              | 4           |
| Herts AL1 2RD                                                                                     | For planning approval                                                                                                                                  | - Cm        |
| Date 25/01/2018                                                                                   | Designed by S Bliss                                                                                                                                    | Micro       |
| File Car Park B, C + Buildin                                                                      | Checked by SGB                                                                                                                                         | Drainage    |
| Micro Drainage                                                                                    | Source Control 2017.1                                                                                                                                  |             |
| niero prainage                                                                                    | bourbe concret roty.1                                                                                                                                  |             |
| Ra                                                                                                | infall Details                                                                                                                                         |             |
| Rainfall Model<br>Return Period (years)<br>Region Engla<br>M5-60 (mm)<br>Ratio R<br>Summer Storms | FSR Winter Storms<br>100 Cv (Summer)<br>nd and Wales Cv (Winter)<br>19.200 Shortest Storm (mins)<br>0.423 Longest Storm (mins)<br>Yes Climate Change % | 0.840<br>15 |
|                                                                                                   | ne Area Diagram                                                                                                                                        |             |
| 20.05570                                                                                          | 1 Area (ha) 0.370                                                                                                                                      |             |
|                                                                                                   | Area Time (mins) Area<br>(ha) From: To: (ha)                                                                                                           |             |
| 0 4                                                                                               | 0.185 4 8 0.185                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
|                                                                                                   |                                                                                                                                                        |             |
| ©1982                                                                                             | -2017 XP Solutions                                                                                                                                     |             |
|                                                                                                   |                                                                                                                                                        | 6           |





| Dam Doorigon Itd                                                                                                                         |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                            | Dago 1                          |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| BAM Design Ltd                                                                                                                           | Duebu Due                                                                                                                                                                                                                                                                                                                          | - Cabaal                                                                                                                                                                                                                                       |                                                                                                                                                                            | Page 4                          |
| Centrium, Griffiths Way                                                                                                                  | Rugby Fre                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |                                                                                                                                                                            | L.                              |
| St Albans                                                                                                                                |                                                                                                                                                                                                                                                                                                                                    | B, C + par                                                                                                                                                                                                                                     |                                                                                                                                                                            | 1 m                             |
| Herts AL1 2RD                                                                                                                            |                                                                                                                                                                                                                                                                                                                                    | ing approv                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                      | - Micro                         |
| Date 25/01/2018                                                                                                                          | a second second second second                                                                                                                                                                                                                                                                                                      | by S Bliss                                                                                                                                                                                                                                     |                                                                                                                                                                            | Drainage                        |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                            | brainacje                       |
| Micro Drainage                                                                                                                           | Source Co                                                                                                                                                                                                                                                                                                                          | ntrol 2017                                                                                                                                                                                                                                     | .1                                                                                                                                                                         |                                 |
| Infiltration C<br>Membra<br>D<br><u>Hydro-Brake</u><br>Uni<br>Design<br>Design<br>D                                                      | Source Co<br><u>Model Deta</u><br>nline Cover<br><u>s Car Park</u><br>oefficient B<br>ne Percolati<br>Max Percola<br>Saf<br>Invert<br>Sepression St<br>Evaporatio<br>Membrane<br><u>s® Optimum</u><br>t Reference<br>gn Head (m)<br>Flow (1/s)<br>Flush-Flo <sup>m</sup><br>Objective<br>Application<br>p Available<br>ameter (mm) | ntrol 2017<br>ils<br>Level (m) 1<br>Structure<br>ase (m/hr)<br>on (mm/hr)<br>tion (1/s)<br>ety Factor<br>Porosity<br>Level (m)<br>Width (m)<br>Length (m)<br>lope (1:X)<br>orage (mm)<br>n (mm/day)<br>Detth (m)<br>Dutflow Cor<br>MD-SHE-0045 | 6.000<br>0.00000<br>1000<br>444.4<br>2.0<br>0.30<br>15.200<br>16.0<br>100.0<br>0.0<br>5<br>3<br>0<br>htrol<br>-1200-1680-1<br>1.<br>Calcula<br>pstream stor<br>Surf<br>14. | 200<br>680<br>1.2<br>ted<br>age |
| Control P                                                                                                                                | oints I                                                                                                                                                                                                                                                                                                                            | lead (m) Flo                                                                                                                                                                                                                                   | ow (1/s)                                                                                                                                                                   |                                 |
| Decian Point //                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    | 1.680                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                        |                                 |
| Design Point (0                                                                                                                          | Flush-Flo <sup>™</sup>                                                                                                                                                                                                                                                                                                             | 0.202                                                                                                                                                                                                                                          | 0.8                                                                                                                                                                        |                                 |
|                                                                                                                                          | Kick-Flo®                                                                                                                                                                                                                                                                                                                          | 0.405                                                                                                                                                                                                                                          | 0.6                                                                                                                                                                        |                                 |
| Mean Flow over                                                                                                                           | Head Range                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                              | 0.9                                                                                                                                                                        |                                 |
| The hydrological calculations h<br>for the Hydro-Brake® Optimum as<br>device other than a Hydro-Brake<br>calculations will be invalidate | specified.<br>Optimum® be                                                                                                                                                                                                                                                                                                          | Should ano                                                                                                                                                                                                                                     | ther type of                                                                                                                                                               | control                         |
| Depth (m) Flow (l/s) De                                                                                                                  | pth (m) Flow                                                                                                                                                                                                                                                                                                                       | (1/s) Dept                                                                                                                                                                                                                                     | h (m) Flow (                                                                                                                                                               | 1/s)                            |
| 0.100 0.7                                                                                                                                | 1.000                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | 2.400                                                                                                                                                                      | 1.4                             |
| 0.200 0.8                                                                                                                                | 1.200                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | 2.600                                                                                                                                                                      | 1.5                             |
| 0.300 0.7<br>0.400 0.6                                                                                                                   | 1.400<br>1.600                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                | 3.000<br>3.500                                                                                                                                                             | 1.6<br>1.7                      |
| 0.500 0.7                                                                                                                                | 1.800                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | 4.000                                                                                                                                                                      | 1.8                             |
| 0.600 0.8                                                                                                                                | 2.000                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | 4.500                                                                                                                                                                      | 1.9                             |
| 0.800 0.9                                                                                                                                | 2.200                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                | 5.000                                                                                                                                                                      | 2.0                             |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                 |
| ©198                                                                                                                                     | 2-2017 XP S                                                                                                                                                                                                                                                                                                                        | olutions                                                                                                                                                                                                                                       |                                                                                                                                                                            |                                 |



| Daw Deeders The                      |                                    | Dama E     |  |  |  |  |  |  |  |
|--------------------------------------|------------------------------------|------------|--|--|--|--|--|--|--|
| BAM Design Ltd                       | B 1 B 01 1                         | Page 5     |  |  |  |  |  |  |  |
| Centrium, Griffiths Way              | Rugby Free School                  |            |  |  |  |  |  |  |  |
| St Albans                            | Car Park B, C + part bldg          | 1 m        |  |  |  |  |  |  |  |
| Herts AL1 2RD                        | For planning approval              | Micro      |  |  |  |  |  |  |  |
| Date 25/01/2018                      | Designed by S Bliss                | Drainage   |  |  |  |  |  |  |  |
| File Car Park B, C + Buildin         | Checked by SGB                     | brainage   |  |  |  |  |  |  |  |
| Micro Drainage                       | Source Control 2017.1              |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
| Hydro-Brake® Optimum Outflow Control |                                    |            |  |  |  |  |  |  |  |
| Depth (m) Elow (1/s) Dept            | h (m) Flow (l/s) Depth (m) Flow (l | /e)        |  |  |  |  |  |  |  |
|                                      |                                    | 13)        |  |  |  |  |  |  |  |
|                                      |                                    | 2.5        |  |  |  |  |  |  |  |
|                                      |                                    | 2.6<br>2.7 |  |  |  |  |  |  |  |
| 8.500 2.2                            | 8.000 2.4  9.500                   | 2.7        |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |
| -                                    |                                    |            |  |  |  |  |  |  |  |
| ©1982                                | -2017 XP Solutions                 |            |  |  |  |  |  |  |  |
|                                      |                                    |            |  |  |  |  |  |  |  |





| DaM Dealer Itd                        |                        |                |                |                |                    |                  |                   | Dago           | 1    |
|---------------------------------------|------------------------|----------------|----------------|----------------|--------------------|------------------|-------------------|----------------|------|
| BAM Design Ltd                        | the Merr               |                | Dur            |                | Cabarl             |                  |                   | Page           | т    |
| Centrium, Griffit                     | uns way                |                |                | _              | School             |                  |                   | Y              |      |
| St Albans                             |                        |                | 1011010101     |                |                    | l Attenua        | tion              |                | 7 ~  |
| Herts AL1 2RD                         |                        |                |                |                | ng Appr            |                  |                   | Micr           | 0    |
| Date 01/01/2018                       |                        |                |                |                | y S Bli            | SS               |                   |                | nage |
| File 4726 SEN Ca                      | r Park                 | inclu.         | Chec           | cked by        | SGB                |                  |                   | Dian           | lage |
| Micro Drainage                        |                        |                | Sour           | ce Con         | trol 20            | 17.1             |                   |                |      |
| Cummi                                 |                        | 1 <del>-</del> | - f 1/         | 0.0            | Detune             | Deviad           | (1408)            |                |      |
| Summa                                 | ary or r               | Result         | 5 IOF I        | JU year        | Recuri             | n Period         | (+40%)            |                |      |
|                                       |                        | Half D         | rain Tim       | ne : 110       | )2 minut           | es.              |                   |                |      |
| C to a second                         | Marri                  | M              |                |                |                    | M                | M                 | 64             |      |
| Storm<br>Event                        | Max<br>Level           | Max<br>Depth   | Ma:<br>Infiltr |                | Max<br>Control     | Max<br>□ Outflow | Max<br>Volume     | Sta            | tus  |
| Lvont                                 | (m)                    | (m)            | (1/:           |                | (1/s)              | (1/s)            | (m <sup>3</sup> ) |                |      |
| 1E min Summon                         | 111 011                | 0 011          |                | 0.0            | 0.1                | 2.4              | 115 4             | Flood          | Diak |
| 15 min Summer<br>30 min Summer        |                        |                |                | 0.0            | 2.1                | 2.1              |                   | Flood          |      |
| 60 min Summer                         |                        |                |                | 0.0            | 2.2                | 2.2              |                   | Flood          |      |
| 120 min Summer                        |                        |                |                | 0.0            | 2.3                | 2.3              |                   | Flood          |      |
| 180 min Summer                        |                        |                |                | 0.0            | 2.3                | 2.3              |                   | Flood          |      |
| 240 min Summer                        |                        |                |                | 0.0            | 2.4                | 2.4              |                   | Flood          |      |
| 360 min Summer                        |                        |                |                | 0.0            | 2.4                | 2.4              | 257.5             | Flood          |      |
| 480 min Summer                        |                        |                |                | 0.0            | 2.4                | 2.4              |                   | Flood          |      |
| 600 min Summer                        |                        |                |                | 0.0            | 2.4                | 2.4              |                   | Flood          |      |
| 720 min Summer                        |                        |                |                | 0.0            | 2.4                | 2.4              |                   | Flood          |      |
| 960 min Summer                        |                        |                |                | 0.0            | 2.4                | 2.4              |                   | Flood          |      |
| 1440 min Summer                       |                        | 10000          |                | 0.0            | 2.3                | 2.3              |                   | Flood<br>Flood |      |
| 2160 min Summer<br>2880 min Summer    |                        |                |                | 0.0            | 2.3                | 2.3              | 196.4             |                |      |
| 4320 min Summer                       |                        |                |                | 0.0            | 2.2                | 2.2              |                   | Flood          |      |
| 5760 min Summer                       |                        |                |                | 0.0            | 2.1                | 2.1              |                   | Flood          |      |
| 7200 min Summer                       |                        |                |                | 0.0            | 2.1                | 2.1              |                   | Flood          |      |
| 8640 min Summer                       |                        |                |                | 0.0            | 2.1                | 2.1              |                   |                | 0 K  |
| 10080 min Summer                      |                        |                |                | 0.0            | 2.1                | 2.1              |                   |                | 0 К  |
| 15 min Winter                         | 114.639                | 0.239          |                | 0.0            | 2.1                | 2.1              | 130.5             | Flood          | Risk |
|                                       |                        |                |                |                |                    |                  |                   |                |      |
|                                       | Storm                  |                | Rain           |                |                    | arge Time-       | Peak              |                |      |
|                                       | Event                  | 2              | (mm/hr)        | Volume<br>(m³) | e Volu<br>(m³      |                  | ns)               |                |      |
|                                       | A.F. and and           | 0              | 405 404        | 5 6<br>        | 97 1<br>194 - 1942 | di<br>Versio de  | 20                |                |      |
|                                       | 15 min 30 min 3        |                | 135.484 88.169 | 0.<br>0.       |                    | 17.6<br>55.8     | 26<br>41          |                |      |
|                                       | 60 min                 |                | 54.663         | 0.             |                    | 95.2             | 70                |                |      |
| 1                                     | 20 min 3               |                | 32.785         | 0.             |                    | 36.1             | 128               |                |      |
|                                       | 80 min :               |                | 24.016         | 0.             |                    | 50.2             | 188               |                |      |
| 2                                     | 240 min                |                | 19.157         | Θ.             |                    | 77.1             | 246               |                |      |
|                                       | 860 min                |                | 13.835         |                |                    | 0.00             | 364               |                |      |
| 4                                     | 180 min 3              | Summer         | 10.992         | 0.             | 0 31               | 18.4             | 484               |                |      |
|                                       | 600 min 3              |                | 9.188          |                |                    | 32.9             | 602               |                |      |
| i i i i i i i i i i i i i i i i i i i | 20 min 3               |                | 7.934          | 0.             |                    | 44.8             | 720               |                |      |
|                                       | 060 min                |                | 6.289          | 0.             | SA 850             | 57.3             | 866               |                |      |
|                                       | 40 min                 |                | 4.527          | 0.             |                    | 52.0             | 1110              |                |      |
|                                       | 60 min                 |                | 3.253          | 0.             |                    | 21.7             | 1496              |                |      |
|                                       | 880 min 8<br>820 min 8 |                | 2.571<br>1.844 | 0.<br>0.       |                    | 42.6<br>72.2     | 1908<br>2728      |                |      |
|                                       | 60 min                 |                | 1.455          | 0.             |                    | 92.2             | 3520              |                |      |
|                                       | 200 min                |                | 1.210          | 0.             |                    | 92.2             | 4320              |                |      |
|                                       | 640 min                |                | 1.040          | 0.             |                    | 19.5             | 5024              |                |      |
|                                       | )80 min                |                | 0.916          | 0.             |                    | 29.3             | 5752              |                |      |
|                                       | 15 min 1               | Winter         | 135.484        | 0.             |                    | 32.7             | 26                |                |      |
|                                       |                        | ©14            | 82-2017        | 7 XP So        | lutions            | 1                |                   |                |      |
|                                       |                        |                |                |                |                    | 25               |                   |                |      |



| BAM Design Ltd                      |                                  |                                           |                    |                     |                     | Page 2                 |
|-------------------------------------|----------------------------------|-------------------------------------------|--------------------|---------------------|---------------------|------------------------|
| Centrium, Griffi                    | ths Way                          | Rugh                                      | by Free            | School              |                     |                        |
| St Albans                           |                                  | Car                                       | Park D             | + Road Att          | enuation            | 4                      |
| Herts AL1 2RD                       |                                  | For                                       | Plaanin            | g Approval          |                     | - Cu                   |
| Date 01/01/2018                     |                                  |                                           |                    | S Bliss             |                     | - Micro                |
| File 4726 SEN Ca                    | r Park inclu                     | 10000000000000000000000000000000000000    | cked by            |                     |                     | Drainage               |
|                                     | I TAIK INCIU.                    |                                           |                    | rol 2017.1          |                     |                        |
| Micro Drainage                      |                                  | Sour                                      | ce conc            | 101 2017.1          | 2                   |                        |
| Summ                                | ary of Result                    | s for 10                                  | 00 year            | Return Per          | iod (+4(            | )%)                    |
| Storm                               | Max Max                          | Ma                                        |                    | Max Ma              | ax Ma               | ax Status              |
| Event                               |                                  | (7-0)-10000000000000000000000000000000000 | However the starts | ntrol 🛛 Out         |                     |                        |
|                                     | (m) (m)                          | (1/                                       |                    |                     |                     | <sup>3</sup> )         |
| 30 min Winter                       | 114.715 0.315                    |                                           | 0.0                | 2.2                 | 2.2 17              | 1.9 Flood Risk         |
|                                     | 114.790 0.390                    |                                           | 0.0                | 2.3                 |                     | 2.7 Flood Risk         |
| 120 min Winter                      | 114.860 0.460                    | 1                                         | 0.0                | 2.4                 | 2.4 25              | 1.4 Flood Risk         |
| 180 min Winter                      |                                  |                                           | 0.0                | 2.4                 |                     | 1.4 Flood Risk         |
| 240 min Winter                      |                                  |                                           | 0.0                | 2.4                 |                     | 3.1 FL00D              |
| 360 min Winter                      |                                  |                                           | 0.0                | 2.4                 |                     | 5.2 FL00D              |
| 480 min Winter                      |                                  |                                           | 0.0                | 2.4                 |                     | 1.0 FL00D<br>3.0 FL00D |
| 600 min Winter<br>720 min Winter    |                                  |                                           | 0.0                | 2.4                 |                     | 3.0 FL00D<br>2.2 FL00D |
| 960 min Winter                      |                                  |                                           | 0.0                | 2.4                 |                     | 5.8 FL00D              |
| 1440 min Winter                     |                                  |                                           | 0.0                | 2.4                 |                     | 4.5 FLOOD              |
| 2160 min Winter                     |                                  |                                           | 0.0                | 2.4                 |                     | 8.9 Flood Risk         |
| 2880 min Winter                     | 114.813 0.413                    | 1                                         | 0.0                | 2.3                 | 2.3 22              | 5.4 Flood Risk         |
| 4320 min Winter                     |                                  |                                           | 0.0                | 2.2                 |                     | 0.7 Flood Risk         |
| 5760 min Winter                     |                                  |                                           | 0.0                | 2.1                 |                     | 0.4 Flood Risk         |
| 7200 min Winter                     |                                  |                                           | 0.0                | 2.1                 |                     | 4.8 0 K                |
| 8640 min Winter<br>10080 min Winter |                                  |                                           | 0.0                | 2.1 2.1             |                     | 3.3 0 K<br>4.6 0 K     |
|                                     | Storm<br>Event                   | Rain<br>(mm/hr)                           |                    | Discharge<br>Volume | Time-Peak<br>(mins) | ¢                      |
|                                     |                                  |                                           | (m³)               | (m³)                |                     |                        |
|                                     | 30 min Winter                    |                                           | 0.0                | 173.7               | 40                  |                        |
|                                     | 60 min Winter                    | 54.663                                    | 0.0                | 220.0               | 68                  |                        |
|                                     | 120 min Winter<br>180 min Winter | 32.785<br>24.016                          |                    | 265.4               | 126                 |                        |
|                                     | 240 min Winter                   | 19.157                                    | 0.0<br>10.1        | 292.4<br>311.5      | 242                 |                        |
|                                     | 360 min Winter                   | 13.835                                    | 22.2               |                     | 358                 |                        |
|                                     | 480 min Winter                   | 10.992                                    | 28.0               | 358.1               | 474                 |                        |
|                                     | 600 min Winter                   |                                           | 30.0               |                     | 588                 |                        |
|                                     | 720 min Winter                   | 7.934                                     | 29.2               | 366.0               | 700                 | 9                      |
|                                     | 960 min Winter                   | 6.289                                     | 22.8               | 366.5               | 918                 |                        |
|                                     | 440 min Winter                   | 4.527                                     | 1.5                |                     | 1168                |                        |
|                                     | 160 min Winter                   | 3.253                                     | 0.0                | 474.4               | 1624                |                        |
|                                     | 880 min Winter<br>320 min Winter | 2.571                                     | 0.0                | 498.2<br>531.9      | 2076<br>2944        |                        |
|                                     | 760 min Winter                   | 1.844<br>1.455                            | 0.0<br>0.0         |                     | 3800                |                        |
|                                     | 200 min Winter                   | 1.210                                     |                    |                     | 4552                |                        |
|                                     | 640 min Winter                   | 1.040                                     | 0.0                |                     | 5352                |                        |
| 10                                  | 980 min Winter                   | 0.916                                     | 0.0                | 599.0               | 6056                | 5                      |
|                                     |                                  |                                           |                    |                     |                     |                        |
|                                     |                                  |                                           |                    |                     |                     |                        |
|                                     | ©1                               | 982-2017                                  | 7 XP Sol           | utions              |                     |                        |



| BAM Design Ltd                                                                                                          |                                                                                                                                                                                                                  | Page 3                        |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Centrium, Griffiths Way                                                                                                 | Rugby Free School                                                                                                                                                                                                | rage 5                        |
| St Albans                                                                                                               | Car Park D + Road Attenuation                                                                                                                                                                                    | 4                             |
| Herts AL1 2RD                                                                                                           | For Plaaning Approval                                                                                                                                                                                            | 1 mm                          |
| Date 01/01/2018                                                                                                         | Designed by S Bliss                                                                                                                                                                                              | Micro                         |
| File 4726 SEN Car Park inclu                                                                                            |                                                                                                                                                                                                                  | Drainage                      |
|                                                                                                                         | Checked by SGB                                                                                                                                                                                                   |                               |
| Micro Drainage                                                                                                          | Source Control 2017.1                                                                                                                                                                                            |                               |
| Rainfall Model<br>Return Period (years)<br>Region Engla<br>M5-60 (mm)<br>Ratio R<br>Summer Storms<br><u>Tir</u><br>Tota | infall Details<br>FSR Winter Storms<br>100 Cv (Summer)<br>nd and Wales Cv (Winter)<br>19.300 Shortest Storm (mins)<br>0.423 Longest Storm (mins)<br>Yes Climate Change %<br>me Area Diagram<br>1 Area (ha) 0.500 | 0.750<br>0.840<br>15<br>10080 |
| Time (mins) Area Ti                                                                                                     | me (mins) Area Time (mins) Area                                                                                                                                                                                  |                               |
|                                                                                                                         | om: To: (ha) From: To: (ha)                                                                                                                                                                                      |                               |
| 0 4 0.200                                                                                                               | 4 8 0.200 8 12 0.100                                                                                                                                                                                             |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |
| ©1982                                                                                                                   | -2017 XP Solutions                                                                                                                                                                                               |                               |
|                                                                                                                         |                                                                                                                                                                                                                  |                               |



| Storage is Onl                                                                                                                                  | For Plaan<br>Designed<br>Checked E<br>Source Co<br>Model Deta<br>ine Cover E<br>Car Park                                           | D + Road Atter<br>hing Approval<br>by S Bliss<br>by SGB<br>ontrol 2017.1<br><u>ils</u><br>Level (m) 114.90<br><u>Structure</u><br>Gase (m/hr) 0.000<br>on (mm/hr) 1 | Micro<br>Drainad                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| St Albans<br>Herts AL1 2RD<br>Date 01/01/2018<br>File 4726 SEN Car Park inclu<br>Micro Drainage<br><u>M</u> Storage is Onl                      | Car Park<br>For Plaam<br>Designed<br>Checked h<br>Source Co<br>Model Deta<br>ine Cover H<br>Car Park<br>efficient B<br>e Percolati | D + Road Atter<br>hing Approval<br>by S Bliss<br>by SGB<br>ontrol 2017.1<br><u>ils</u><br>Level (m) 114.90<br><u>Structure</u><br>Gase (m/hr) 0.000<br>on (mm/hr) 1 |                                       |
| Herts AL1 2RD<br>Date 01/01/2018<br>File 4726 SEN Car Park inclu<br>Micro Drainage<br><u>M</u> Storage is Onl                                   | For Plaam<br>Designed<br>Checked h<br>Source Co<br>Model Deta<br>ine Cover H<br>Car Park<br>efficient B<br>e Percolati             | hing Approval<br>by S Bliss<br>ontrol 2017.1<br><u>ils</u><br>Level (m) 114.90<br>Structure<br>Gase (m/hr) 0.00<br>on (mm/hr) 1                                     |                                       |
| Date 01/01/2018<br>File 4726 SEN Car Park inclu<br>Micro Drainage<br><u>M</u> Storage is Onl                                                    | Designed<br>Checked b<br>Source Co<br>Model Deta<br>ine Cover I<br>Car Park<br>efficient B<br>Percolati                            | by S Bliss<br>ontrol 2017.1<br><u>ils</u><br>Level (m) 114.94<br>Structure<br>Gase (m/hr) 0.00<br>on (mm/hr) 1                                                      | 000                                   |
| File 4726 SEN Car Park inclu<br>Micro Drainage<br><u>M</u> Storage is Onl                                                                       | Checked b<br>Source Co<br>Model Deta<br>ine Cover I<br>Car Park<br>efficient B<br>Percolati                                        | by SGB<br>pontrol 2017.1<br><u>ils</u><br>Level (m) 114.94<br><u>Structure</u><br>Base (m/hr) 0.00<br>on (mm/hr) 1                                                  | 000                                   |
| Micro Drainage<br><u>M</u><br>Storage is Onl                                                                                                    | Source Co<br>Model Deta<br>ine Cover I<br>Car Park<br>efficient B<br>e Percolati                                                   | ils<br>Level (m) 114.94<br>Structure<br>Gase (m/hr) 0.00<br>on (mm/hr) 1                                                                                            | 000                                   |
| Storage is Onl                                                                                                                                  | Model Deta<br>ine Cover I<br>Car Park<br>efficient B<br>e Percolati                                                                | <u>ils</u><br>Level (m) 114.94<br><u>Structure</u><br>Base (m/hr) 0.00<br>on (mm/hr) 1                                                                              | 000                                   |
| Storage is Onl                                                                                                                                  | ine Cover I<br>Car Park<br>efficient B<br>e Percolati                                                                              | Level (m) 114.90<br><u>Structure</u><br>Base (m/hr) 0.00<br>on (mm/hr) 1                                                                                            | 000                                   |
|                                                                                                                                                 | Car Park<br>efficient B<br>e Percolati                                                                                             | Structure<br>Base (m/hr) 0.00<br>on (mm/hr) 1                                                                                                                       | 000                                   |
| Porous                                                                                                                                          | efficient B<br>e Percolati                                                                                                         | Base (m/hr) 0.00<br>on (mm/hr) 1                                                                                                                                    |                                       |
|                                                                                                                                                 | e Percolati                                                                                                                        | on (mm/hr) 1                                                                                                                                                        |                                       |
| ٢                                                                                                                                               | Saf<br>Invert<br>S<br>pression St<br>Evaporatio                                                                                    | ety Factor<br>Porosity 0<br>Level (m) 114.<br>Width (m) 3<br>Length (m) 5<br>Dope (1:X)                                                                             | 5.6<br>2.0<br>.30                     |
| Hydro-Brake®                                                                                                                                    | ) Optimum (                                                                                                                        | Outflow Contro                                                                                                                                                      | 1                                     |
|                                                                                                                                                 |                                                                                                                                    |                                                                                                                                                                     |                                       |
| Desigr<br>Design F<br>F<br>Ap<br>Sump<br>Dian                                                                                                   | n Head (m)<br>Flow (1/s)<br>Flush-Flo™<br>Objective<br>oplication<br>Available<br>meter (mm)<br>Level (m)                          | MD-SHE-0074-230<br>Minimise upstr                                                                                                                                   | 0.900<br>2.3<br>Calculated            |
| Control Poi                                                                                                                                     | ints I                                                                                                                             | Head (m) Flow (                                                                                                                                                     | /s)                                   |
|                                                                                                                                                 | lush-Flo™<br>Kick-Flo®                                                                                                             | 0.900<br>0.273<br>0.565<br>-                                                                                                                                        | 2.3<br>2.3<br>1.9<br>2.0              |
| The hydrological calculations hav<br>for the Hydro-Brake® Optimum as s<br>device other than a Hydro-Brake O<br>calculations will be invalidated | specified.                                                                                                                         | Should another                                                                                                                                                      | type of control                       |
| Depth (m) Flow (1/s) Dept                                                                                                                       | th (m) Flow                                                                                                                        | (1/s) Depth (m                                                                                                                                                      | ) Flow (l/s)                          |
| 0.100 2.0<br>0.200 2.3<br>0.300 2.3<br>0.400 2.2<br>0.500 2.1<br>0.600 1.9<br>0.800 2.2                                                         | 1.000<br>1.200<br>1.400<br>1.600<br>1.800<br>2.000<br>2.200                                                                        | 2.4 2.40<br>2.6 2.60<br>3.0 3.50<br>3.2 4.00<br>3.3 4.50<br>3.5 5.00                                                                                                | 0 3.7   0 4.0   0 4.3   0 4.6   0 4.8 |



| Date D. J                            |                                 | D         |  |  |  |  |  |  |
|--------------------------------------|---------------------------------|-----------|--|--|--|--|--|--|
| BAM Design Ltd                       | Purchase Purchase Contraction   | Page 5    |  |  |  |  |  |  |
| Centrium, Griffiths Way              | Rugby Free School               | 2         |  |  |  |  |  |  |
| St Albans                            | Car Park D + Road Attenuation   | 1 m       |  |  |  |  |  |  |
| Herts AL1 2RD                        | For Plaaning Approval           | Micro     |  |  |  |  |  |  |
| Date 01/01/2018                      | Designed by S Bliss             | Drainage  |  |  |  |  |  |  |
| File 4726 SEN Car Park inclu         | Checked by SGB                  | brainacje |  |  |  |  |  |  |
| Micro Drainage                       | Source Control 2017.1           |           |  |  |  |  |  |  |
| Hydro-Brake® Optimum Outflow Control |                                 |           |  |  |  |  |  |  |
| nydro Brakew operman oderrow concror |                                 |           |  |  |  |  |  |  |
| Depth (m) Flow (1/s) Dept            | h (m) Flow (l/s) Depth (m) Flow | (1/s)     |  |  |  |  |  |  |
|                                      | 7.000 6.0 8.500                 | 6.5       |  |  |  |  |  |  |
|                                      | 7.500 6.2 9.000                 | 6.7       |  |  |  |  |  |  |
|                                      | 8.000 6.3 9.500                 | 6.9       |  |  |  |  |  |  |
| 500 - 50000 - 50 50 20               |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
|                                      |                                 |           |  |  |  |  |  |  |
| ©1982                                | -2017 XP Solutions              |           |  |  |  |  |  |  |



Appendix E: Micro Drainage Calculations.